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Abstract
Machine learning methods have proven their effectiveness in

a wide range of program optimization tasks. These methods

selectively map program feature spaces to carefully defined

optimization spaces to identify effective optimizations. How-

ever, the size and complexity of these spaces often necessitate

large amounts of training data to achieve effective mappings.

For certain optimization tasks, obtaining accurate training

data can be costly, making data efficiency a critical concern.

Reinforcement learning (RL) offers a promising solution by

dynamically adjusting exploration strategies and selectively

requesting training data. In this paper, we propose leveraging

reinforcement learning to optimize compilation sequences.

This paper presents the Data-efficient Compiler Optimiza-

tion Selection (DeCOS) system, which utilizes a reinforce-

ment learning engine to perform a guided search of the

optimization spaces. To improve the data efficiency in train-

ing DeCOS, we utilize synthesized data to configure the

RL-architecture; and incorporate simulation results to refine

profiling information. To overcome the slow start-up issue

in RL-processes, we integrate an LLM into the workflow,

leveraging its knowledge to accelerate the initial training

phase of the RL-agent. Our experiments show that DeCOS

efficiently generates compiler optimization sequences that
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either match or outperform that of the state-of-the-art opti-

mizer Opentuner. Furthermore, the DeCOS reinforcement

learning engine, once trained, demonstrates its versatility by

showing portability across different target applications and

hardware platforms, highlighting its broad applicability and

adaptability.
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1 Introduction
Modern compilers perform the complex task of mapping

programs written in high-level programming languages onto

the underlying hardware and optimizing the program along

the way. The compiler must select a set of optimizations

and apply them in a specific sequence to achieve the desired

performance goal [6, 33]. Achieving the optimal optimization

options not only requires analyzing program characteristics

and determining how to take advantage of the underlying

hardware, but also requires taking into consideration the

constructive or destructive interaction among optimizations.

The permutation of optimization passes creates a large search

space that is highly irregular and difficult to search [31].
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Programmers, limited by time and resources, often use pre-

selected sets of optimizations, such as -O2 and -O3, thus
being unable to achieve the full potential of the compiler’s

optimization infrastructure.

Some recent works [2, 12, 17, 34] have made significant

progress in exploring the compiler optimization sequence

space and efficiently identifying optimal sequences. These

techniques are tailored to specific classes of applications,

because they are either specifically trained for a single task

or relying on application-specific techniques [2, 34]. Thus,

their applicability is limited and cannot be generalized to

other applications.

Existing works targeting general applications can be clas-

sified into twomain categories: search-based algorithms [3, 9,

20, 30] and supervised-learning-based [12] algorithms.While

these methods have achieved success in certain scenarios,

they also face inherent limitations.

Search-based algorithms, such as hill climbing [3] and

genetic algorithms (GAs) [9, 20, 30], search for the optimal

compiler optimization sequence by exploring the space de-

fined by all possible compilation sequences, as shown in Fig-

ure 1(a). For efficient searches, these algorithms explore the

search space either along the direction of gradual descent or

by introducing mutations. However, the greedy nature of hill

climbing often leads to local optimum, while the undirected

mutations in genetic algorithms demand massive generation

and filtering, leading to significant computational overhead.

Moreover, the search conducted by these algorithms is tai-

lored to a specific application and hardware environment,

necessitating re-initialization for every new task. In other

words, the knowledge gained during the exploration of one

program cannot be retained or transferred to subsequent

explorations, resulting in no cumulative learning from past

experiences.

Supervised learning-based approaches, alternatively, can

learn the impact of various optimizations from previous expe-

rience. When presented with a new program, they produce

an optimization sequence based on the learned mapping,

as shown in Figure 1(b). In supervised learning-based ap-

proaches, the model maps code features to predicted op-

timization sequences. The program feature space and the

optimization space are both high dimensional. For example,

the LLVMOptimizer opt [21] uses 85 optimization options in

its -O3. Given that the same option can recur multiple times

and that the order in which options are applied matters, the

number of potential optimization sequences for a sequence

of 16 distinct options is an astronomical 85
16
. Thus, training

a supervised learning model to perform a precise mapping is

exceptionally challenging. The high cost of obtaining train-

ing data in this problem exacerbates the problem, as each

program must be compiled and profiled thousands of times

with different optimization options, yet only a small subset of

sequences yielding optimal results is used to train the model.

Thus, previous works that attempted to employ supervised

learning algorithms for optimization set selection, such as

MilepostGCC [12], struggle to obtain sufficient training data.

In conclusion, there remains a pressing need for a machine

learning tool that can be effectively and efficiently applied

to any target program, delivering substantial performance

improvements [11]. The timeliness requirement limits the

feasibility of large-scale exploration of the search space, and

thus a guided search, based on program characteristics and

prior compilation experience is preferred. A machine learn-

ing model that incorporates target program characteristics

and the effects of compiler optimization passes can serve

as the foundation for a more effective and efficient search

process.

Reinforcement Learning (RL), often referred to as inter-
active machine learning, in which the RL-agent learns the

optimal actions by interactively exploring an environment

and collecting observations from the actions [29]. In other

words, RL is able to efficiently explore a search space while

learning, making it an ideal candidate for addressing the

requirements of compiler optimization selection. Figure 1(c)

illustrates an RL-agent searching through the optimization

space of a given application. The RL-agent makes optimiza-

tion decisions using a combined observation that includes

both program features and the current position within the

optimization space. The RL-agent predicts an optimization

step, illustrated as an arrow, within the optimization space.

Compared to Supervised Learning (SL) models, which map

program features to a point in the entire optimization space

in one single step, the RL-agent breaks this complex task

into a sequence of smaller sub-tasks. In each sub-task, the

RL-agent’s mapping target is a much smaller sub-space (illus-

trated as circles in Figure 1(c)). This approach significantly

reduces the complexity of the mapping the RL-model needs

to learn. In addition, taking small steps in the search space

enables the RL-agent to benefit from additional information

observed in each step. Moreover, the RL-agent demonstrates

higher data efficiency compared to SL models during train-

ing. While SL models rely solely on pre-collected training

data, RL-agents learn iteratively by collecting observations

from the optimization space. These observations allow the

RL-agent to continuously refine its mapping strategy, en-

abling it to make improved decisions over time and self-train

on data with improved efficiency.

However, applying RL algorithms to the optimization task

presents several challenges. To develop a practical RL-based

optimization approach, the following issues must be ad-

dressed:
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(a) Search-based algorithms explore the en-

tire optimization space.

(b) Supervised-Learning Algorithms create

a mapping from the program features space

to the optimization space.

(c) DeCOS conducts a guided search through the

optimization space using an RL-agent that maps

observations to an exploration step. The RL-agent

dynamically updates its strategy in the search

process.

Figure 1: Different strategies for compiler optimization sequence search.

Selecting hyper-parameters for the RL-model: Hyper-
parameters define the architecture of the RL-model, in-

cluding the number of layers, learning rate, etc. Hyper-

parameter tuning can be a labor-intensive process and

incur substantial costs. Therefore, an efficient mecha-

nism for hyper-parameter tuning is essential.

Observing efficient information: RL-agents rely on ob-
servations from the search space to make informed

decisions. To obtain adequate information about the

current optimization state, the content of the observa-

tion must be carefully selected.

Accelerating slow startup: Although RL-agents can ef-
ficiently learn and adapt their strategies to the current

task through accumulated experience, the initial ex-

ploration can still be inefficient. This often results in a

slow and expensive startup phase.

Adjusting noisy data: RL-agents make decisions and

adapt their strategies based on the outcomes of previ-

ous decisions, known as rewards. Earlier results sig-

nificantly influence subsequent decisions, leading to

cumulative impacts over time. Thus, RL-agents are

highly sensitive and vulnerable to noise and errors in

the observations and rewards. Minimizing noise in the

collected data is critical to ensuring reliable learning.

In this paper, we introduce Data-efficient reinforcement

learning for Compiler Optimization Selection (DeCOS) ig-

nited by LLM, a reinforcement learning-based approach de-

signed to efficiently navigate the optimization space of a

target program by leveraging learned experience. Under this

context, DeCOS makes the following contributions toward

the development and implementation of a reinforcement

learning framework for compiler optimization sequence se-

lection:

(1) DeCOS introduces a training data synthesizer to syn-

thesize training data with similar characteristics as

realistic data for hyper-parameter tuning and reward

function refinement. This enables the RL-agent to op-

erate at optimized settings without requiring extensive

and time-consuming preliminary experimentation on

realistic data.

(2) DeCOS incorporates performance counter information

into the observation of the optimization state, enhanc-

ing traditional code representation typically used for

optimization. This integrated performance informa-

tion provides insights for DeCOS to understand the

reasons for changes in performance, and in turn enable

more efficient decision-making.

(3) DeCOS addresses the challenge of slow startup in RL-

systems by replacing time-consuming random explo-

rations with decisions guided by Large Language Mod-

els (LLMs). The program analysis and reasoning capa-

bilities of LLMs enable DeCOS to establish a reasonable

starting point without incurring significant costs.

(4) DeCOS mitigates the noise inherent in performance

data collected from real machines by refining profiling

information using data from cache simulators. This



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Cui et al.

cleaner data enables DeCOS to avoid mishaps during

space exploration.

2 Related Works
In this section, we will discuss prior works on producing

compiler optimization sequences.Wewill also discuss related

work in areas of code representation.

2.1 Prior Optimization Approaches
Search-based algorithms [3, 9, 20, 26, 30], such asHill-climbing

and Genetic Algorithms (GA), have been applied to explore

the optimization space of programs as a classic solution.

ACOVEA [20] is a GA-based compiler optimization selection

tool that has been widely adopted by the programming com-

munity. Almagor et al. [3] demonstrate that hill-climbing

algorithms can be applied to find high-performing optimiza-

tion sequences. Although demonstrated successful in differ-

ent contexts, these search-based algorithms are generally ex-

pensive for general-purpose optimization selection because

they incur significant data collective overhead when applied

to new applications. For example, ACOVEA requires 5.5 days

to search the optimization space for a program that takes

just one minute to compile and execute, highlighting the

high computational cost of such methods.

On the other hand, Supervised learning (SL) algorithms

[8, 12, 28], such as Milepost GCC [12], are built on prior

compilation experience and aim to predict the optimal opti-

mization sequence based on the program features, as shown

in Figure 1(b). By avoiding exploring the optimization space,

these algorithms can be more efficient than search-based

algorithms on new applications. However, these SL-based

algorithms suffer from the lack of exploring in the unseen

space, and the limit of training data. As a result, supervised

learning approaches either cannot provide competitive opti-

mization results compared to search-based approaches, or

are only reserved for problems characterized by a relatively

small optimization space such as determining optimal loop

unroll factors [28].

2.2 Reinforcement Learning Algorithms
Reinforcement Learning [15, 23] algorithms combine search-

ing and learning when presented with an optimization task,

as shown in Figure 1(c). RL algorithms search the optimiza-

tion space guided by an RL-agent, which can learn and adjust

itself during the optimization process to better fit the current

optimization task.

The key components of an RL-infrastructure can be sum-

marized as the RL-agent, observation, prediction, and reward

gain. RL-agent acts as the core of the RL-infrastructure, the

RL-agent processes observations as input and generates pre-

dictions as output. Observations represent the information

provided to the RL-agent about the current state of its en-

vironment. This input is critical for enabling the agent to

make informed decisions about the next action to take. The

prediction is the action decided by the RL-agent based on the

given observation. This action reflects the RL-agent’s cur-

rent strategy and its understanding of how to maximum the

reward gain in its current state. The reward gain evaluates

the effectiveness of an action (or a series of actions). It can

be provided immediately after each action or cumulatively

after completing a sequence of actions. Higher rewards en-

courage the agent to replicate similar actions under similar

conditions, while lower rewards discourage undesirable ac-

tions, guiding the agent toward more effective strategies.

This feedback loop among observation, prediction and re-

ward gain enables the RL-agent to iteratively improve its

decision-making ability and its efficiency in exploring the

environment over time.

As an instance, Autophase [17] successfully uses RL to

solve options set selecting problems for HLS (High-Level

Synthesis) designs. Autophase follows a similar idea to most

of the SL approaches that statistical facts of a program should

be the most important guidance when doing optimization, it

only considers statistical features and already-used passes

of the program when predicting the next optimization pass,

with no additional information or feedback information pro-

vided for each step. In other words, the advantage of RL-

infrastructure is not being fully exploited to approach high

data efficiency. While showing impressive optimization re-

sults, Autophase is still not able to solve the general opti-

mization task, as it still requires a large amount of data to be

trained. Such data is only available under a special scenario

of optimizing HLS designs where there is a fast method to es-

timate the performance without requiring time-consuming

simulation [18]. There are also other RL-based optimiza-

tion tools, such as CHAMELEON [2] and DYNATUNE [34],

which focus on optimizing deep neural networks. However,

most of these tools are only targeted at one program or one

type of program, and cannot provide a general approach for

all programs, due to their dependencies on necessary do-

main knowledge, to estimate the performance of the target

program without execution to reduce the cost, etc. These

reinforcement learning solutions emphasize the ability of

RL-agents to explore the search space effectively for a single

target program but overlook RL’s learning ability to repro-

duce and update its learned strategy on unseen programs.

In summary, RL stands out as the preferred framework

for program optimization tasks. However, existing RL ap-

proaches fall short of fully utilizing the inherent strengths

of the RL workflow, particularly its adaptability to unseen

tasks. This highlights the need for further advancements to

develop a general-purpose program optimization tool.
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2.3 Code Representation
Machine learning algorithms operate by learning and per-

forming a mapping from input data to a predicted output.

For these models to make accurate and efficient predictions,

the input to the model that serves as a source of information

must be represented effectively. In program optimization, an

effective code representation that accurately captures the

features of the given program is crucial for the success of

machine learning algorithms in predicting potential opti-

mizations. To enable efficient optimization, such representa-

tion must effectively convey the complex characteristics of

the target application to the model. Many Machine-learning-

based [1, 12, 17, 28] optimization tools, either SL-based or

RL-based, rely on statistical analysis metrics such as instruc-

tion count, basic block count, and loop nest levels as their

input. The statistical metrics, as a code representation, cap-

ture only a limited aspect of program features, as they fail

to provide detailed insights into the logic and structure of

the code. For instance, a program with a rarely used nested

loop that has minimal impact on its performance might share

similar statistical metrics to a program that spends most of

its execution time in a computationally intensive nested loop.

These two programs require different optimization strategies

but cannot be effectively distinguished by an ML model that

relies solely on statistical metrics as input.

Fortunately, with the widespread application of machine

learning models which utilizes an array form of representa-

tion called embedding as inputs, significant advancements

have been made in code embedding techniques. Novel em-

bedders delicately designed for generating code embeddings,

such as Code2vec [4] and IR2vec [32], have been developed,

so that the generated code embeddings can better represent

the features of the target programs. Research has shown

that a good code embedding model can significantly improve

the performance of downstream applications, such as pro-

gram classification, etc. However, even these state-of-the-art

embedding models cannot flawlessly address the optimiza-

tion task. Unlike program classification, which relies solely

on the program’s static features, optimal optimizations of-

ten depend on the runtime characteristics of the applica-

tion and the underlying hardware platform. The absence of

this runtime information highlights a critical gap in existing

code representations, suggesting opportunities for further

improvements tailored to the needs of optimization tasks.

This gap becomes even more pronounced in an RL-based

optimizer, as runtime characteristics provide detailed, real-

time feedback to the RL model, reflecting the impact of each

decision it makes.

2.4 Large Language Models and
Reinforcement Learning

Large Language Models (LLMs) are renowned for their ca-

pabilities in handling code-related tasks and have already

been applied to program optimizations [13] [10]. To effec-

tively integrate LLMs into complex, domain-specific tasks,

fine-tuning becomes essential. Fine-tuning refers to the pro-

cess of adapting a pre-trained model to perform a specific

task by updating its parameters using task-specific data. This

process ensures that the model’s general knowledge can be

refined to address the unique requirements of a particular

task. The fine-tuning process can be broadly categorized

into two main types: Supervised Fine-Tuning (SFT) and Re-

inforcement Fine-Tuning (RFT). Among these, RFT offers

the advantages of requiring less data and adapting more

quickly to unseen tasks. Current RFT applications, such as

Reinforcement Learning with Human Feedback (RLHF) [19],

have gained popularity for aligning LLM outputs with hu-

man preferences and enhancing task-specific performance.

Potentially program optimization.

However, applying RL-based infrastructures to fine-tune

LLMs faces a significant challenge: high computational costs.

LLMs are deep neural networks, and each weight update is

computationally intensive, requiring substantial hardware re-

sources. This challenge becomes even more significant when

the target task necessitates frequent model updates, such as

adapting to the optimization process for individual target

programs. Suggesting the importance of developing an alter-

native LLM-RL integration approach with lower overhead

and better flexibility, on these special use cases.

3 DeCOS: Data-Efficient RL Infrastructure
In this section, we present DeCOS, a compiler optimization

framework driven by an LLM-ignited reinforcement learning

engine that searches the space defined by all optimization

sequences, designed with a focus on high data efficiency.

As illustrated in Figure 2, the system takes C programs

as input and compiles them into LLVM IRs [21] for the RL-

driven optimization process. To explore the optimization

space and formulate sequences of optimization options for

the target codes, DeCOS operates through a nested loop struc-

ture. Each inner loop incrementally constructs a sequence of

optimization options by iteratively adding single optimiza-

tion options to the sequence. Such loops are repeated to

identify an optimal sequence of optimization passes.

In the 𝑘th iteration of an inner optimization loop, the core

component of DeCOS, the RL-agent, predicts the 𝑘th opti-

mization option 𝑃𝑘 to apply to the 𝑘th optimized LLVM IR

based on the corresponding observation 𝑂𝑘 as input. This

predicted optimization option is then performed by Clang
opt on the 𝑘th optimized LLVM IR, producing the (𝑘 + 1)th
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Figure 2: DeCOS Workflow: The RL-agent iteratively optimizes the LLVM IR of the target functions by applying
one optimization option per iteration, while continuously updating its optimization strategy throughout the
process.

optimized IR. The resulting IR is subsequently compiled into

a binary file and profiled or simulated. Based on the perfor-

mance of the optimized binary, a reward 𝑅𝑘 is generated to

evaluate the effectiveness of 𝑃𝑘 . This reward is used to guide

the RL-agent in refining its prediction strategy. Additionally,

detailed performance counters profiled (or simulated) from

the binary are combined with the code embedding of the IR

to formulate the observation 𝑂𝑘+1, enabling the RL-agent

to predict the next optimal pass. The inner loop continues

until the maximum optimization options sequence length

(denoted as 𝑁 , set to 16 in our evaluation) is reached. At this

point, the DeCOS model restarts the search using the origi-

nal unoptimized LLVM IR, initiating a new loop. To balance

the cost and frequency of model updates, DeCOS updates

the strategy of its RL-agent after constructing every three

completed optimization sequences. Consequently, we define

three loops as one training epoch.

DeCOS repeats such optimization loops until one of two

conditions is met: (1) the performance of the target program

reaches an expected level, where the model determines that

any further optimizations of the target program can hardly

be done, or (2) the maximum allowable time for the optimiza-

tion process is consumed. The best-performing optimization

sequences identified during the search are then presented as

the final result.

As an RL-based framework, DeCOS is designed to learn on
the job, efficiently training itself using high-quality data gen-

erated during the optimization process while simultaneously

exploring the optimization space and identifying optimal se-

quences. This capability necessitates that DeCOS be able to

effectively adapt its strategy toward better directions during

the task based on the experience it accumulates. To enable

this adaptability, we implemented specific design features

within DeCOS.

During its preprocessing step, DeCOS identifies and ex-

tracts the LLVM IRs of hot functions from the target pro-

grams, concentrating its optimization efforts on these critical

functions. After extracting the LLVM IRs, DeCOS uses a code

embedding tool to generate embeddings for each function,

preparing them for further optimization. This implementa-

tion makes DeCOS operate at the function level, allowing

for more fine-grained and accurate optimization, while also

generating more training data from each costly program test.

Then, before the RL-agent starts to iteratively optimize the

target functions, its hyper-parameters were pre-tuned with

a synthesized dataset to ensure the learning efficiency of the

RL-agent on the optimization task. In addition, although the

DeCOS’s RL-agent can be sufficiently trained to guide its

own exploration and learning effectively, external assistance

is required for the initial phase of exploration. During this

early stage, DeCOS employs an LLM predictor to provide

guidance. By analyzing the target functions to be optimized,

the LLM predictor suggests potential optimization sets to try.

With this guidance, the RL-agent can more quickly identify

and focus on promising exploration areas, significantly re-

ducing the time required to accumulate sufficient experience

for initialization. Once DeCOS enters its main optimization

loops, it integrates simulated performance data of the target

functions with real profiled performance data. This combina-

tion helps adjust noisy results and ensures accurate reward

feedback 𝑅𝑘 to the RL-agent. By maintaining clean and re-

liable performance records, DeCOS ensures that decisions

made in later loops are not affected by potentially polluted

profiling data from earlier loops. Meanwhile, to provide the

RL-agent with sufficient observation 𝑂𝑘 for effective learn-

ing and accurate predictions, DeCOS integrates multiple
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sources of information, combining static features and dy-

namic feedback to create a comprehensive representation of

the optimization status.

A detailed explanation of these synergistic design features

will be provided in the following section.

4 DeCOS: Challenges and Solutions
This section presents a detailed implementation of DeCOS

and discusses how it addresses the inherent limitations of

the RL framework, corresponding to each challenge outlined

in Section 1.

4.1 Tuning Hyper-parameters with
Synthesized Data

At the outset, designing a high-quality RL-agent for the op-

timization task requires determining the appropriate hyper-

parameters before proceedingwith its actual implementation.

The efficacy of Machine Learning approaches, especially Re-

inforcement Learning approaches, is highly dependent on the

choice of hyper-parameters, including the size of the neural

network, learning rate, formulation of the reward function,

etc. Unfortunately, determining hyper-parameters is often

an ad-hoc process. In DeCOS, the high cost associated with

training data collection prohibits an extensive exploration of

the hyper-parameters. Thus, we derived a hyper-parameter

selection process based on synthesized training data.

To create the synthesized dataset, we first randomly opti-

mized several small programs from MiBench [14], profiling

and collecting the compiler-benchmark interactions. By ex-

tracting key statistical characteristics from this small dataset,

we generated a synthesized dataset simulating relationships

among optimization sets, hardware counters, and code fea-

tures. While this synthesized dataset does not perfectly re-

flect the real optimization tasks, it replicates the task’s gen-

eral complexity and logical structure. As such, it may not

provide sufficient knowledge to train the RL model directly

but is effective for determining its hyper-parameters.

Using the synthesized dataset, we tuned the hyper-parameters

of DeCOS’s RL model. This approach not only facilitated effi-

cient hyper-parameter tuning but also enabled us to evaluate

the RL-agent’s efficacy comprehensively without incurring a

resource-intensive training phase. By leveraging this process,

we established a robust foundation for the RL-agent, ensur-

ing it is well-prepared for real-world optimization tasks.

Figure 3(a) and Figure 3(b) show the results of hyper-

parameter evaluation on the synthesized dataset. Figure 3(a)

illustrates the impact of neural network architecture on the

training performance. Smaller networks, such as NN256-L3

(3 layers with 256, 128, and 64 nodes) and NN512-L3 (3 lay-

ers with 512, 256, and 128 nodes), fail to train efficiently on

the synthesized task. However, increasing the size beyond

NN512-L4 (4 layers with 512, 256, 256, and 128 nodes) results

in diminishing returns. Based on this evaluation, the archi-

tecture of the RL-agent in DeCOS was set to NN512-L4 to

reach a balance between performance and computational ef-

ficiency. NN512-L4, identified as the smallest efficient neural

network during hyper-parameter evaluation, can be trained

and executed quickly on typical CPUs, even in the absence

of GPUs.

Figure 3(b) evaluates the effect of learning rates on training

performance. Low learning rates, such as 1E5LR (1 × 10
−5
),

are characterized by flatter slopes, indicating lower learn-

ing efficiency on the synthesized dataset. Conversely, higher

learning rates, such as 2E4LR (2×10−4) or 1E3LR (1×10−3), ini-
tially exhibit promising performance in the first few epochs

but then lead to overfitting and performance degradation in

later stages. To balance learning efficiency and model stabil-

ity, DeCOS selects a learning rate of 1E4LR (1× 10
−4
) during

its early training phase, and selects the learning rate of 1E3LR

for a trained model when applied to an unseen optimization

target and aims for faster convergence. This dedicated model

design significantly contributes to DeCOS’s performance,

enabling it to achieve a balance of efficiency and stability.

This task would be difficult to accomplish without the syn-

thesized dataset and corresponding hyper-parameter tuning.

Additionally, DeCOS also evaluated several reward func-

tions using the synthesized dataset and selected the most

effective one, that for each individual optimization pass 𝑃𝑘
applied, the reward 𝑅𝑘 is calculated as the difference in CPU

cycles before and after the pass. Once an entire optimization

sequence is completed, an additional reward based on the

total optimization result is applied, directing the RL-agent

toward sequences that maximize overall performance im-

provements.

4.2 Augmented Code Representation for RL
Optimization

As the key component of DeCOS, the RL-agent in DeCOS is a

neural network that performs a mapping to predict the next

optimization pass based on an observation of the current

compilation and execution status of the target application. To

ensure efficient predicting, the observation given as the input

to the RL-agent needs to be carefully designed to contain

sufficient information.

In DeCOS, we refer to the combined static and dynamic

information as Augmented Code Representation.

DeCOS uses IR2vec [32], a scalable encoding infrastruc-

ture to encode the intermediate representation (IR) as vec-

tors ready for the RL-agent. The default IR2vec produces a

50-dimensional vector for a given input code segment. In De-

COS, the representation is reduced to eight dimensions. The

RL-agent is sensitive to input space size, as high-dimensional
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(a) Neural network size (b) Learning rate

Figure 3: Hyper-parameter evaluation: X-axis is training epoch; Y-axis is the average performance for the epoch.

inputs lead to a complex mapping that is hard to learn. This

constraint is exacerbated by the high-cost associated with

generating training data. Thus, reducing the embedding di-

mension enables better data efficiency. Our evaluations on

Splash-3 [27] indicate that with the reduction of embedding

dimensions to 8, IR2vec retains its capability to cluster dis-

tinct functions. This indicates that the dimensionality reduc-

tion preserves sufficient information in the embedding, as

DeCOS operates at the function level, where the represen-

tation inherently captures less complexity than the entire

program. Once generated, the code embedding of the target

functions remains unchanged throughout the optimization

process, to provide static program information.

Performance information serve as another crucial infor-

mation source for the DeCOS model, guiding its exploration

of the optimization space for the target application. Cavazos

et al. [8] demonstrated that performance information such

as Hardware Performance Counters (HPCs) can help address

the problem of predicting effective compiler optimizations

as the input for a logistic regression model, a form of super-

vised learning. However, the dynamic nature of performance

information, which reflects the current execution state of

the target application, makes it particularly better suited for

RL frameworks. This information provides detailed insights

into the impact of each applied optimization, delivering com-

prehensive feedback that enables the RL-engine to learn and

adapt effectively.

Furthermore, integrating performance information not

only enhances decision-making but also enables DeCOS to

perform cross-platform optimization. The optimization of a

target application is fundamentally based on a vector of {pro-

gram, environment}, while a code representation alone only

contains static information about the program. The challenge

of applying a trained model to different hardware platforms

can be addressed by incorporating runtime performance in-

formation into the workflow, as it reflects the current state of

the environment. For instance, while unrolling options may

generally improve performance, they can degrade it on de-

vices with insufficient instruction cache. Without observing

performance data in the new environment, a model cannot

make such accurate decisions. In summary, a general model

capable of optimizing multiple types of programs across

diverse hardware platforms can only be realized by incorpo-

rating performance feedback into the optimization process.

It is worth noticing that including all potential performance

information can significantly increase the complexity of the

input, and thus slow down the training process. Therefore we

only incorporate the most commonly used information, that

is CPU cycles, number of instructions, cache-misses, branch-

misses, L1-dcache-load-misses, L1-dcache-write-misses, and

L1-icache-load-misses, where the number of CPU cycles is

also the optimization target and is used to calculate the re-

ward. We normalize these counters at first by calculating

the ratio of 𝐶𝑂𝑈𝑁𝑇𝐸𝑅/𝐶𝑌𝐶𝐿𝐸 to show overall how rela-

tively large these counters are instead of their absolute val-

ues. Since most counters are significantly less than cycles,

we use the logarithm of the 𝐶𝑂𝑈𝑁𝑇𝐸𝑅/𝐶𝑌𝐶𝐿𝐸 ratio as the

observation.

Additionally, we profile the 3 most time-consuming in-

structions as part of the observation, which is also a piece of

information commonly used by human developers. Knowing

the type of the most time-consuming instructions (for exam-

ple, whether they are floating-point multiplications, or load

instructions) can help decide the best optimization to take.

These instructions are represented in the form of a word

embedding generated by the Word2vec [22] model, which

provides additional hints for optimization.
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Last but not least, as evaluated in Autophase [17], includ-

ing already-taken options into the observation helps the

model make better decisions. By also including already-taken

options as part of the observation, the RL-agent can have a

better view of the current compilation state, and therefore

make a better prediction.

In conclusion, DeCOS constructs an information-rich ob-

servation to equip the RL-agent with the data necessary for

making well-informed decisions. This observation integrates

code embeddings to represent the static features of the target

program, augmented with hardware performance counters

to capture its dynamic runtime behavior and current opti-

mization state. Additionally, the observation is enhanced

with details about previously applied optimization options

and time-consuming instructions, further guiding the search

toward efficient directions.

4.3 Boosting Early Performance:
Integrating LLMs for Start-up
Acceleration

RL-agents require exploration experience within the target

environment to effectively get trained. While an experienced

RL-agent can guide its own exploration after initial train-

ing, it cannot perform efficient exploration during the early

phases, often relying on random exploration.

In a large search space, random exploration is highly inef-

ficient, leading to a slow startup. To overcome this limitation,

DeCOS integrates Large Language Models (LLMs) to guide

the initial exploration phase. LLMs are employed to ana-

lyze the target codes, and generate potential optimizations

correspondingly, allowing the RL-agent to learn from the

resulting optimization outcomes. These LLM-suggested op-

timizations are typically more effective and provide more

valuable information for subsequent exploration compared

to randomly generated ones. Additionally, DeCOS enables

further interaction between its RL-agent and the LLM model.

This collaboration allows the LLM to analyze optimization

options selected by the RL-agent and suggest potential im-

provements. This dynamic feedback loop enables the LLM

also be able to benefit from the RL-agent’s learned strategies

without requiring costly fine-tuning or weight updates. By

leveraging the knowledge and reasoning capabilities of LLMs,

DeCOS enables the RL-agent to quickly acquire meaningful

experience and identify promising directions, significantly

accelerating the learning process. During its training and

evaluation, DeCOS employs GPT-4o-mini [25] as its collabo-

rating LLM.

4.4 Handling Noise with Simulated Results
Performance information serves multiple critical purposes

in DeCOS: while providing runtime behavior data of the

optimization target as part of the efficient observation input

to the RL-agent for decision-making, it also functions as the

ultimate objective of optimization, being used to train and

evaluate the performance of DeCOS, towards fewer CPU

cycles.

Performance information can be collected using profiling

tools like Linux perf. Previous approaches, such as Milepost-

GCC [12], typically profile a program multiple times and use

the average of the results. However, DeCOS iteratively ap-

plies one optimization at a time, resulting in relatively small

differences between successive optimized binaries. This am-

plifies the impact of profiling noise. Moreover, as an RL-based

system, DeCOS is particularly sensitive to noisy data, as it can

introduce long-term bias in the search directions, negatively

affecting the overall optimization process. These features

suggest the necessity of a stabler performance measurement

for training DeCOS.

Simulators provide an effective solution for ensuring ac-

curate and stable performance measurements. For instance,

Autophase [16] uses a domain-specific HLS simulator to es-

timate the performance of optimized HLS designs. However,

general-purpose simulators might not be able to accurately

estimate the runtime performance of target programs. There-

fore, DeCOS utilizes Cachegrind, a component of the Val-

grind simulation suite [24], to provide stable output, along-

side the profiled results, to provide corrected feedback. After

each optimization pass is applied, DeCOS uses Cachegrind

to simulate the updated program and collect updated simu-

lated runtime and hardware performance counters. Once a

complete optimization sequence is formulated, DeCOS calcu-

lates an additional accumulated performance gain based on

real profiled data, ensuring that the system remains focused

on achieving the ultimate goal of improved profiled perfor-

mance. If the profiled performance varied significantly from

the simulated performance, DeCOS records such results for

further validation and correction. Since simulation results are

noise-free and used only for intermediate observation and

decision-making, DeCOS employs a smaller input dataset for

simulations, such as the test input for SPEC, to significantly
reduce the computational cost of using the simulator.

5 Evaluation
In this section, we evaluate the effectiveness of DeCOS using

Clang-12 as the compilation infrastructure. Optimization

and performance results are collected on AMD EPYC 7763

processors. All results are measured in CPU-cycles and are

averaged over four repeated runs. When the deviation of

the profiling results is greater than a threshold of 5%, an

additional 4 runs are invoked. Simulated results, generated by

Cachegrind [24], are used solely as intermediate performance
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Figure 4: Best performance achieved by DeCOS and Opentuner on SPEC (hot functions), evaluated on the AMD EPYC
7763 processor, where DeCOS is trained. The Y-axis represents performance normalized to that of -O0.

Figure 5: Best performance achieved by DeCOS and Opentuner on SPEC (hot functions), evaluated on an AMD Ryzen
9950X CPU, which is a hardware environment that DeCOS is not exposed to during training. The Y-axis represents
performance normalized to that of -O0.

information to minimize noise and are not included in the

reported performance.

We aim to evaluate the performance of DeCOS on all

benchmarks from SPEC CPU 2017 Speed [7] that are written
in C or C++. 600.perlbench_s from SPEC INT is excluded

due to compilation challenges with the Clang infrastructure.

For each benchmark, we evaluate DeCOS on all hot functions,

i.e., functions that correspond to more than 2% of the total

execution time. To ensure a fair comparison and avoid inter-

function interference, optimizations are applied exclusively

to hot functions extracted using the llvm-extract.

5.1 Performance and Portability
DeCOS is designed to continuously improve its efficiency by

learning from accumulated experience. To evaluate this capa-

bility, we train DeCOS on optimization tasks for Splash-3
and Parsec-3 and test its effectiveness on SPEC CPU 2017.



DeCOS: Data-Efficient Reinforcement Learning for Compiler Optimization Selection Ignited by LLM ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

The results are compared with the state-of-the-art perfor-

mance tuner, Opentuner [5], which combinesmultiple search-

based optimization approaches. For a fair comparison, we

limit the optimization option sequences to 16 optimizations

chosen from the 60 commonly used options, with the possi-

bility of re-applying the passes. Once DeCOS or Opentuner
generates a complete optimization sequence, the optimized

program is tested and profiled. The reported results are per-

formance normalized to that of -O0.
As shown in Figure 4, the evaluations are conducted with

the same amount of effort, measured by the number of tests

and profiles performed on each program. Each benchmark is

tested for up to 32 tests/profiles. Due to experimental envi-

ronment constraints, for benchmarks with long test/profiling

cycles, the number of tests/profiles is adjusted and aligned

across all experiments to fit within a 24-hour testing cycle.

DeCOS achieves better performance on 61.5% (40/65) of hot

functions from SPEC CPU 2017 compared to Opentuner, and
achieves similar performance on 7.7% (5/65) of hot functions.

The results demonstrate that DeCOS can effectively optimize

SPEC benchmarks it has not encountered during training. On

average, DeCOS outperforms Opentuner by 21.4% (geomet-

ric mean).

Figure 6: CPU-cycles of optimized SPEC benchmarks
normalized to that of -O0 (lower bars show better per-
formance). For each benchmark, the diagonally striped
components represent functions that are not identified
as hot functions during evaluation and could not be
optimized by either DeCOS or Opentuner in the evalua-
tion workflow.

For overall program performance, we combine the best-

optimized hot functions from each benchmark and profile the

total runtime. The results are presented in Figure 6, DeCOS

outperforms Opentuner on 605.mcf_s, 631.deepsjeng_s, 644.nab_s
and 657.xz_s, aligned with the performance on the hot func-

tions. However, for benchmark 641.leela_s, Although De-

COS achieves better function-level performance, it is out-

performed by Opentuner at the program level. Synergistic

approaches that consider both function-level and program-

level performance can potentially mitigate this issue. Bench-

marks 602.gcc_s and 623.xalancbmk_s are excluded from

the program-level comparison (despite DeCOS performing

better on both), because hot functions in these benchmarks

account for less than 5% of the total execution time.

DeCOS can optimize target programs using performance

counters in addition to code features. This capability is ex-

pected to enable DeCOS to adapt and perform effectively in

execution environments that it is previously unexposed to.

We apply DeCOS, trained on AMD EPYC 7763 CPUs, to a

hardware environment equipped with an AMD Ryzen 9950X

CPU. As shown in Figure 5, DeCOS maintains its efficiency

on the new hardware platform. Compared to Opentuner,
DeCOS achieves better performance on 66.2% (43/65) of the

hot functions and similar performance on 16.9% (11/65) of

the hot functions. The results indicate that DeCOS is able to

effectively transfer its optimization capabilities to previously

unseen programs, even on hardware platforms it has not

been exposed to during training. On average, DeCOS outper-

forms Opentuner by 26.8%, demonstrating a clear advantage.

For SPEC CPU benchmarks, the -O3 option can potentially

perform transformations that incur significant performance

degradation that is difficult to reverse. Thus, DeCOS chooses

to explore the optimization space using -O0 as the baseline.
At the program level, DeCOS achieves a 5.1% performance

improvement over -O3. A hybrid approach that applies the

best-performing optimizations for each function, either -O3
or DeCOS, achieves a 5.7% performance improvement com-

pared to that of using -O3 alone.

5.2 Data Efficiency
In this section, we evaluate the data efficiency of DeCOSwith

a case study examining its training process on Splash-3.
Figure 7 illustrates a clear trend of performance improve-

ment during training, highlighting DeCOS’s ability to learn

and adapt as it accumulates experience. The X-axis repre-

sents epochs over the training process, where each epoch

contains the experience of constructing 3 completed 16-

option optimization sets. In these training epochs, the per-

formance updates of the first 13 options are produced by

the Cachegrind simulator, while the performance outcomes

of the last 3 options are profiled with perf and refined

with simulation results. While the Y-axis indicates perfor-

mance normalized to the -O0 optimization baseline. The

perf_epoch line denotes the best performance achieved
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Figure 7: Performance achieved vs. training iteration
for the Transpose function from Splash-3 fft: X-axis
is the training epoch number; Y-axis is the perfor-
mance normalized to that of -O0. The perf_epoch line
represents the best performance achieved within each
epoch,while the smoothed line is aGaussian-smoothed
version of perf_epoch. The accumulated_best line
tracks the best performance achieved with prior
epochs.

within each epoch, while the accumulated_best line re-

flects the best performance observed across all epochs up

to that point. Within a relatively small number of epochs,

the performance improvement achieved over time shown by

the perf_epoch and accumulated_best lines demonstrates

that DeCOS is capable of progressively updating and adapt-

ing its optimization strategy. To better visualize this over-

all trend, the smoothed line presents a Gaussian-smoothed

version of the perf_epoch data, showing a consistent in-

crease in performance during the search. Although both

the perf_epoch and the smoothed lines trend upwards, the

perf_epoch line shows significant fluctuation. This indi-

cates that DeCOS is balancing its efforts between focusing

on promising sub-spaces that are likely to yield better per-

formance and exploring broader regions of the optimization

space.

5.3 Overhead
DeCOS introduces two additional modules compared to tra-

ditional heuristic models: an RL-engine and an LLM query in-

terface. As described in Section 4.1, the RL-engine is carefully

designed to balance performance and efficiency, incurring

negligible overhead (less than 0.1 seconds for each predic-

tion). The overhead introduced by the LLM query interface

is less straightforward to evaluate, as it relies on external API

calls rather than local computation. We estimate its impact

using wall-clock time. To quantify the overhead, we sample

32 queries during the evaluation and record the response

times from OpenAI’s server. On average, each query takes

13.7 seconds to complete. Since the LLM query interface is

only used sparingly to accelerate RL-agent initialization, its

contribution to the total wall-clock time is minimal. In our

logs, these two modules incur less than 1% of wall-clock time

overhead. Furthermore, both modules can run in parallel

with the profiling and testing phases, further reducing their

impact on overall runtime.

5.4 Ablation Studies
This section presents ablation studies focusing on the ad-

vanced code representation enhanced with hardware perfor-

mance counters and the integration of LLMs. This evaluation

includes the following configurations:

(1) A baseline DeCOS model utilizing advanced code rep-

resentation but without LLM-integration.

(2) Baseline DeCOS model with LLM integrated.

(3) Baseline DeCOSmodel without hardware performance

counter information in its code representation.

The comparison between configuration 1 and configura-

tion 3 highlights the impact of incorporating hardware per-

formance counters into the code representation. Similarly,

the comparison between configuration 1 and configuration 2

demonstrates the impact of LLM-integration on optimization

performance. It is worth pointing out that, comparison with

configuration 3 also serves as a comparison against existing

RL-based optimizers such as Autophase. Autophase solely

relies on program features, optimization options, and overall

performance to guide the RL-engine, and thus it is equiva-

lent to a DeCOS configuration without LLM-integration or

hardware performance counter feedback.

5.4.1 Advanced Code Representation. Compared to existing

reinforcement learning-based optimization approaches, De-

COS incorporates hardware performance counters into its

workflow. This integration offers valuable insights into the

runtime behaviors of the target program, enabling more in-

formed and effective optimization decisions. To demonstrate

the effectiveness of the advanced code representation, we

conduct a comparison using the same collected experience

employed to train the baseline DeCOS. Specifically, we train

a modified model, DeCOS_withoutHPC, in which the hard-

ware performance counter observations are masked with

zeros. This model is then applied to the same testing bench-

marks where the baseline DeCOS is evaluated, with hard-

ware counters masked. The evaluation results indicate that,

compared to the baseline DeCOS, the DeCOS_withoutHPC
model achieves better optimization results on only 32.3%

of the functions, while performance decreases on 52.3% of

the functions. The geometric mean of the optimized perfor-

mance of the functions (normalized to -O0) also decreases
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Figure 8: Performance Comparison: Differences in performance on the best-optimized SPEC CPU 2017 functions
achieved by DeCOS without hardware performance counters (DeCOS_withoutHPC), compared to the baseline DeCOS.
Masking hardware performance counters has a negative impact on the performance of most functions.

by approximately 2%. As shown in Figure 8, masking hard-

ware performance counters results in a negative impact on

the performance. These findings highlight the impact of in-

corporating hardware performance counters into the code

representation, enabling DeCOS to make more informed and

optimal decisions.

In the evaluation phase, DeCOS must trade off the fre-

quency of updating the hardware performance information

and the associated performance overhead as minimizing

overhead is important. Performing simulations after each op-

timization step incurs 16 simulations, introducing significant

overhead. We limit the number of simulations to one during

evaluation, updating the hardware performance information

in the observation only after applying the first optimization

option. This setup ensures minimal overhead, and all eval-

uation results presented in this paper are conducted under

this setup. On the contrary, during the training phase, hard-

ware performance counter information is updated after each

optimization option is applied, providing detailed data to

support efficient learning.

We evaluate a simplified version of DeCOS that eliminates

all simulations during the optimization process, except for a

single simulation of the unoptimized program at the starting

point. With this configuration, the hardware performance

information of the target function in the observation remains

static, ensuring that each sequence of options formulated by

DeCOS incurred exactly the same cost as Opentunerwith no
additional overhead. For SPEC, DeCOS’s predictions remain

largely unchanged in the initial epochs during the evalu-

ation phase. This is because the SPEC benchmarks in this

LLM-Integration Evaluating Training

Phase Phase

No. of Functions improved 35/65 (53.8%) 53/91 (58.2%)

No. of Functions degraded 19/65 (29.2%) 38/91 (41.8%)

Change in geometric mean -0.005 +0.083

Table 1: Impact of LLM-integration: performance dif-
ference compared to the baseline DeCOS.

experiment run for relatively few epochs within a 24-hour

window. However, benchmark behaviors diverge with ad-

ditional epochs, indicating a trade-off between simulation

overhead and the level of performance achieved.

5.4.2 LLM-Integration. DeCOS integrates LLM into its RL

infrastructure to speedup the start-up phase in training. To

demonstrate the efficiency of this design, we integrate an

LLMmodel into the baseline DeCOS, and evaluate the perfor-

mance of DeCOS with an integrated LLM model. To isolate

the impact of LLM-integration on DeCOS’s training speed,

the statistical results include only the optimization sets gen-

erated by DeCOS. Optimization sets suggested by the LLM

are used only when updating DeCOS’s strategy and are not

factored into the presented outcomes. The performance re-

sults are summarized in Table 1.

Guided by the LLM, the trained DeCOS improves perfor-

mance on 53.8% (35/65) of the functions during the evaluat-

ing phase, while it degrades performance on 29.2% (19/65)

of the functions. Although LLM is effective on the major-

ity of the functions evaluated, there is a slight decrease in
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the geometric mean. This suggests a potential limitation of

the LLM-integration. For a trained DeCOS, LLM-integration

offers limited advantages, because LLM can potentially de-

grade performance on functions for which DeCOS is already

effective.

As proposed in section 3, the primary purpose of LLM-

integration is to accelerate the initial phase of model training,

rather than to improve the performance of a trained model.

To evaluate this effect, we conduct an additional evaluation

during the training phase of DeCOS. Specifically, we com-

pare the performance of an untrained DeCOS model with

and without LLM-integrated on the training tasks (optimiz-

ing functions from Splash-3 and Parsec-3). With the same

amount of training time, DeCOS with LLM-integration out-

performs the version without LLM. Compared to the config-

uration without LLM integration, 58.2% of functions achieve

improved performance, while 41.8% experience performance

degradation. LLM-integrated DeCOS also shows an improve-

ment in geometric mean performance. Overall, our results

suggest that integrating the LLM during the evaluation phase

providesmoderate benefits. However, incorporating it during

the training phase has more significant benefits in enhancing

training efficiency.

6 Conclusions
Machine learning techniques have been widely attempted

for various program optimization tasks, however, their adop-

tion is often hindered by the size and the complexity of the

optimization space. In addition, the lack of inexpensive and

accurate training data can slow the deployment of machine

learning algorithms in optimization tasks.

This paper proposes DeCOS, a data-efficient reinforcement

learning approach ignited by LLM, designed to automatically

select compilation optimization passes for any given appli-

cation. Benefiting from its RL-infrastructure, DeCOS is able

to separate a complex mapping task of selecting a completed

optimization sequence into multiple simpler sub-tasks of

selecting a single optimization option. This decomposition

significantly reduces the size of the machine learning prob-

lem and enables better data efficiency. Meanwhile, it also

enables DeCOS to benefit from dynamically interacting with

the optimization space and efficiently learn during this pro-

cess with observed feedback.

DeCOS addresses many inherent challenges of applying

RL-infrastructures to optimization tasks. Key innovations

include an efficient hyper-parameter pre-selection process,

which determines the optimal architecture of the RL model

without significant cost; an enhanced representation com-

bining static and dynamic information to effectively describe

the state of the optimization task; a novel LLM-integration

into RL-infrastructure, enabling the RL-model to leverage

LLM guidance during its initial training phase, accelerating

its early training; and a refined performance evaluation strat-

egy, incorporating simulation results to mitigate profiling

noise and reduce the cost of data collection, ensuring reliable

training data.

In summary, DeCOS is able to generate efficient compila-

tion optimization sequences that can outperform Opentuner
on a significant number of SPEC benchmarks. Meanwhile,

DeCOS has demonstrated the ability to port learned expe-

rience across benchmarks and across hardware platforms.

Ablation studies further validate the efficiency and impact

of DeCOS’s key components.
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