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Abstract
Algebraic multigrid (AMG) is widely used to accelerate large-
scale sparse linear solvers. In distributed environments, neigh-
boring communication overhead in AMG significantly im-
pacts overall solution time. We propose Communication-
Reduced Algebraic Multigrid (CRAMG) methods to minimize
inter-process data exchange and message count by fusing in-
terpolation/restriction operators with residual computations.
This reduces communication frequency from four per level to
as few as two. Experiments show up to 45% reduction in data
exchange and 35% fewer messages. Performance evaluations
on an Intel platform demonstrate significant improvements
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1 Introduction
Algebraic multigrid (AMG) is a widely used preconditioner
or solver in large-scale scientific computing and a vital com-
ponent of many simulation codes. AMG enhances compu-
tational efficiency and convergence by constructing a hier-
archy of grids with varying levels of granularity [11, 27].
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Unlike geometric multigrid methods, AMG is highly adapt-
able, as it does not depend on geometric grid information.
Instead, it automatically generates multilevel grid structures
throughmatrix analysis. This makes it especially effective for
large sparse matrices, significantly reducing computational
complexity and maintaining fast convergence.

AMGhas demonstrated exceptional efficiency on distributed
memory architectures [3, 4]. However, classical AMG meth-
ods face scalability issues due to high communication com-
plexities at the coarse levels [7, 8, 33]. The multigrid algo-
rithm divides the grid problem hierarchically into multiple
levels. As the size of the coarse grid problem decreases, the
number of nonzeros per row in the coarse grid operators
increases, along with the number of neighboring processes.
This leads to a significant increase in communication com-
plexity, which in turn results in a notable decrease in both
performance and scalability.

Numerous strategies have been employed to reduce com-
munication complexity and enhance communication-computation
overlap in AMG. These include aggressive coarsening [15],
sparsification [7], and node-aware inter-node communica-
tion techniques [8]. Recently, an additive variant of AMG,
termed mult-additive, was introduced in [33]. This method
has shown improved solve times and reduced communica-
tion costs. The classical V-cycle AMG requires four neighbor
communication steps per level, as outlined in Algorithm 1.
By incorporating modified operators, the mult-additive ap-
proach reduces the number of communication steps from
four to three, further enhancing parallel efficiency. However,
a limitation of the mult-additive method in [33] is its reliance
on the sparsity of the inverse of the smoothing operator,
which is challenging to achieve in practice.

In this work, we introduce the Communication-Reduced
Algebraic Multigrid (CRAMG) method. CRAMG introduces
a novel class of modified operators that overcome the afore-
mentioned constraint, making them compatible with Gauss-
Seidel and incomplete LU smoothers [28]. CRAMG offers
two variants: CR-D and CR-M. CR-D significantly reduces
inter-process data exchange, while CR-Mminimizes the over-
all number of messages transmitted. The core innovation of
CRAMG is to decrease neighbor communications in AMG by
fusing interpolation or restriction operators [27] with resid-
ual vector computations. These optimizations substantially
reduce the communication frequency per level to three in-
stances, or even two when communications are merged. We
present CRAMG implementations based on two smoothers:
Gauss-Seidel and incomplete LU factorization. Both imple-
mentations effectively reduce the generation overhead of
modified operators during the AMG setup phase, further
enhancing the method’s practicality.

We evaluate CRAMG using a 3D Poisson equation dis-
cretized with 7-point and 27-point stencils, a 3D diffusion-
convection equation to represent asymmetric problems, and
a selection of representative sparse matrices from the SuiteS-
parse Matrix Collection [13]. Comparisons are made against
the classical AMG method and the mult-additive version in
the state-of-the-art AMG library (Hypre [18]). The evalua-
tion includes setup time, solve time, communication costs
and its scalability.

We evaluated our approach on a supercomputer with 128
nodes, each having a 64-core Intel Xeon CPU, using up to
8,192 MPI processes. Results show that CRAMG can signif-
icantly reduce communication overhead: CR-D variant de-
creases inter-process data exchange by 41-45%, while CR-M
variant reduces message count by 31-35%. For GS smooth-
ing, CR-M performs best, achieving 1.21-1.30x speedup
over traditional multiplicative methods and 1.69-1.85x over
Hypre’s mult-additive method. CR-D shows greater advan-
tage with ILU smoothing, achieving 1.09-1.20x speedup over
multiplicative methods, and exhibiting 1.29x performance
improvement compared to the mult-additive method for 7-
point stencil problems. Both variants of CRAMG show good
weak and strong scalability in the solve and setup phases.
Moreover, CRAMG proves to be effective for asymmetric
problems where Hypre’s mult-additive methods typically
perform badly. Our tests on SuiteSparse matrices further
confirm the performance advantage of CRAMG in practical
problems, with a maximum speedup of 1.16x on a single
node.

This paper makes the following contributions:

(1) We propose two novel communication-reducing AMG
variants: CR-D for reducing data exchange and CR-M
for minimizing message count, decreasing neighbor
communications per level from four to three and two,
respectively.

(2) We implement CRAMG with Gauss-Seidel and Incom-
plete LU smoothers, integrating modified operator gen-
eration with coarse grid creation to reduce setup over-
head.

(3) We evaluate CRAMG against classical AMG and mult-
additive methods, demonstrating significant perfor-
mance improvements and scalability across various
problem types and computational scales.

2 Preliminaries
This section introduces key concepts and notation related to
algebraic multigrid (AMG) and the solution of sparse linear
systems, represented as 𝐴𝑥 = 𝑏, where 𝐴 is a large sparse
matrix and 𝑏 is a dense vector.
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V(1,1)-cycle MG with one for pre-smoothing one for 
post-smoothing, 𝑙𝑙 =3 

𝐴𝐴1 = 𝑅𝑅01𝐴𝐴0𝑃𝑃10

𝐴𝐴0

𝐴𝐴2 = 𝑅𝑅12𝐴𝐴1𝑃𝑃21

𝑀𝑀1
0: pre-smoothing 𝑀𝑀2

0 : post-smoothing

𝑅𝑅01 : Restriction

𝑀𝑀1
1 : pre-smoothing

𝑅𝑅12 : Restriction

bottom solver

𝑃𝑃21 : Prolongation

𝑀𝑀2
1 : post-smoothing

𝑃𝑃10 : Prolongation

Figure 1: Flowchart of the V(1,1)-cycle MG algorithm
with l = 3 levels, where V(1,1) denotes that each
level of the grid uses one pre-smoothing and one post-
smoothing, respectively.

2.1 Multiplicative Multigrid
Algebraic Multigrid (AMG) methods [27, 30] utilize a coars-
ening algorithm to recursively construct a multilevel grid
hierarchy, based on the finest grid operator provided 𝐴0 = 𝐴.
Figure 1 shows the flowchart of a V-cycle multigrid with
l = 3. Multigrid methods consist of four key operators:
smoother, restriction, bottom solver, and interpolation.
For each grid 𝑘 = 0, · · · , ℓ − 1, with grid l representing

the coarsest grid, we denote the following operators:
• The interpolation operator 𝑃𝑘

𝑘+1, which transfers the so-
lution from grid 𝑘 + 1 to 𝑘 , and the restriction operator
𝑅𝑘+1
𝑘

, which transfers the residual errors from grid 𝑘 to
𝑘 + 1. Typically, we have 𝑅𝑘+1

𝑘
= (𝑃𝑘

𝑘+1)
𝑇 .

• The coarse grid operator 𝐴𝑘+1 = 𝑅𝑘+1
𝑘

𝐴𝑘𝑃𝑘
𝑘+1 defined on

grid 𝑘 + 1.
• The pre-smoothing operator𝑀𝑘

1 and the post-smoothing
operator𝑀𝑘

2 applied on grid 𝑘 .
With these definitions, we can recursively construct a

multigrid V(1,1)-cycle operator. The notation "V(1,1)" signi-
fies that both the pre-smoothing and post-smoothing steps,
along with the coarse grid correction, each consist of a single
iteration. Specifically, as detailed in [34, Eq. (2) of Sec. 2], the
V(1,1)-cycle operator 𝐵𝑘 on grid 𝑘 = 0, · · · , l − 1 can be
defined recursively by,

𝐵𝑘 = (𝑀𝑘
2 )−1 (𝑀𝑘

1 +𝑀𝑘
2 −𝐴𝑘 ) (𝑀𝑘

1 )−1

+ (𝐼 − (𝑀𝑘
2 )−1𝐴)𝑃𝑘𝑘+1𝐵

𝑘+1𝑅𝑘+1
𝑘

(𝐼 −𝐴(𝑀𝑘
1 )−1).

(1)

In the coarsest grid l, 𝐵𝑘 is defined as 𝐵l = (𝐴l)−1.
The Algorithm 1 shows the procedure of the classical

multigrid algorithm, and it forms the ’V’ cycle. Just as the
operator 𝐵𝑘 is obtained recursively from multiplication, the

Algorithm 1Multiplicative V(1,1)-cycle
1: for 𝑘 = 0, · · · , l − 1 (Sequential) do
2: 𝑥𝑘 = (𝑀𝑘

1 )−1𝑏𝑘
3: 𝑟𝑘 = 𝑏𝑘 −𝐴𝑘𝑥𝑘 // First Residual
4: 𝑏𝑘+1 = 𝑅𝑘+1

𝑘
𝑟𝑘

5:
6: 𝑥l = (𝐴l)−1𝑏l
7:
8: for 𝑘 = l − 1, · · · , 0 (Sequential) do
9: 𝑥𝑘 := 𝑥𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1

10: 𝑥𝑘 := 𝑥𝑘 + (𝑀𝑘
2 )−1 (𝑏𝑘 −𝐴𝑘𝑥𝑘 ) // Second Residual

Algorithm 2Mult-additive V(1,1)-cycle
1: for 𝑘 = 0, · · · , l − 1 (Sequential) do
2: 𝑏𝑘+1 = 𝑅

𝑘+1
𝑘 𝑏𝑘

3:
4: for 𝑘 = 0, · · · , l − 1 (Parallel) do
5: 𝑥𝑘 = (𝑀𝑘

1 )−1𝑏𝑘
6: 𝑥𝑘 := 𝑥𝑘 + (𝑀𝑘

2 )−1 (𝑏𝑘 −𝐴𝑘𝑥𝑘 )
7:
8: 𝑥l = (𝐴l)−1𝑏l
9:
10: for 𝑘 = l − 1, · · · , 0 (Sequential) do
11: 𝑥𝑘 := 𝑥𝑘 + 𝑃

𝑘

𝑘+1𝑥
𝑘+1

classical multigrid algorithm is also called a multiplicative
multigrid. In this configuration, each level of a multiplicative
V-cycle involves four instances of neighboring communi-
cation. Specifically, two communications occur in each 𝐴𝑘

matrix-vector multiplication, while one matrix-vector multi-
plication occurs in each of the 𝑃𝑘

𝑘+1 and 𝑅
𝑘+1
𝑘

at level 𝑘 .
Figure 3(a) illustrates the details of communication and

computation scheduling of the standard AMG. The arrows in-
dicate the execution order between computational units. Red
notations signify communication that occur concurrently
with the computation. The superscript denotes the grid level;
for instance, “𝑀0

1 " and “𝑀0
2 " represent the pre-smoothing

and post-smoothing on grid level 0, respectively. Subscripts
are used to differentiate between local and external com-
putations: "L" in "𝑅0

L" refers to the computation of the local
component of 𝑅1

0 , while "E" denotes the computation of the
external component. “𝐻 " signifies the halo exchange com-
munication, while “𝐻𝑘

𝑃
", “𝐻𝑘

𝐴
" and “𝐻𝑘

𝑅
" indicates the halo

exchange associated with the application of 𝑃𝑘
𝑘+1, 𝐴

𝑘 and
𝑅𝑘+1
𝑘

, respectively.
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rank 0
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rank 1

recvptr 0 3 6
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(d) Halo Exchange

sendptr 0 3 6
sendind 0 3 6 6 7 8

MPI_Irecv
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MPI_Isend

MPI_Isend

(b) Row-wise Partitioning (c) Local data

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
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7
8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

(a) 5-point Grid and Process Allocation

rank 0 rank 3rank 0 rank 1

rank 2 rank 3

Figure 2: The row-wise distribution and the communication pattern of a 5-point matrix in process rank 1. Local
data is split into the local and the external blocks. nnb indicates neighbor count, nbrank lists their ranks. recvptr
and recvind show external block column indices, while sendptr and sendind detail elements for neighboring
processes.

2.2 Mult-additive Multigrid Variant
Amultiplicative additive variant, denoted asmult-additive [33],
was proposed by introducing new operators interpolation
and restriction. They are named smoothed interpolation and
restriction operators, and are defined as follows, respectively.

• The smoothed interpolation operator:

𝑃
𝑘

𝑘+1 = (𝐼 − (𝑀𝑘
2 )−1𝐴)𝑃𝑘𝑘+1, (2)

and the smoothed restriction operator:

𝑅
𝑘+1
𝑘 = 𝑅𝑘+1

𝑘
(𝐼 −𝐴(𝑀𝑘

1 )−1), (3)

for 𝑘 = 0, · · · , l − 1. It is assumed that both (𝑀𝑘
1 )−1

and (𝑀𝑘
2 )−1 are sparse, allowing 𝑃

𝑘

𝑘+1 and 𝑅
𝑘+1
𝑘 to be

explicitly formed.
• The bi-smoothing operator:

𝑀
𝑘
= 𝑀𝑘

1 (𝑀𝑘
1 +𝑀𝑘

2 −𝐴𝑘 )−1𝑀𝑘
2 , (4)

and its inverse:

Ω𝑘 = (𝑀𝑘 )−1, (5)

for 𝑘 = 0, · · · , l−1. We let Ωl = (𝐴l)−1. (𝑀𝑘
is referred

to as the “symmetrized" smoothing operator in [33, 34],
where𝑀𝑘

2 = (𝑀𝑘
1 )𝑇 and 𝐴 is symmetric).

The mult-additive V(1,1)-cycle can be derived by rewriting
the multiplicative formula (1) as

𝐵𝑘 = (𝑀𝑘
2 )−1 (𝑀𝑘

1 +𝑀𝑘
2 −𝐴𝑘 ) (𝑀𝑘

1 )−1

+ (𝐼 − (𝑀𝑘
2 )−1𝐴)𝑃𝑘𝑘+1𝐵

𝑘+1𝑅𝑘+1
𝑘

(𝐼 −𝐴(𝑀𝑘
1 )−1)

= Λ𝑘 + 𝑃
𝑘

𝑘+1𝐵
𝑘+1𝑅

𝑘+1
𝑘 =

l∑︁
𝑗=𝑘

𝑃
𝑘

𝑗 Ω
𝑗𝑅

𝑗

𝑘 ,

(6)

Algorithm 3 Row-wise algorithm for 𝑦 = 𝐴𝑥 .
1: Begin halo exchange communication
2: Compute 𝑦 = 𝐴.local · 𝑥
3: Wait communication requests
4: Compute 𝑦 := 𝑦 +𝐴.exter · recvx

where the composite interpolation operators 𝑃
𝑘

𝑗 = 𝑃
𝑘

𝑘+1𝑃
𝑘+1
𝑘+2 · · · 𝑃

𝑗−1
𝑗

and the composite restriction operators𝑅
𝑗

𝑘 = 𝑅
𝑗

𝑗−1𝑅
𝑗−1
𝑗−2 · · ·𝑅

𝑘+1
𝑘

for 𝑗 > 𝑘 , and 𝑃
𝑘

𝑘 = 𝑅
𝑘

𝑘 = 𝐼 . The procedure is detailed in Al-
gorithm 2.
Compared to the four neighboring communications for

multiplicative V-cycle, the Mult-additive variant requires
only three instances of neighboring communication: one
for the matrix-vector multiplication for 𝐴𝑘 , and one each
for 𝑃

𝑘

𝑘+1 and 𝑅
𝑘+1
𝑘 , respectively. An additional advantage of

the Mult-additive variant is that smoothing operations are
performed concurrently across all levels.

However, in the mult-additive variant, the smoothed inter-
polation 𝑃

𝑘

𝑘+1 and restriction 𝑅
𝑘+1
𝑘 obtained from the matrix-

matrix multiplications tend to exhibit more filled non-zero
elements, which may result in higher communication, com-
putation and memory cost. Fortunately, these costs can be
effectively managed by truncating the smoothed interpola-
tion and restriction operators [14, 30].

2.3 Matrix-vector Multiplications
In distributed environments, popular sparse libraries such as
Hypre [18], PETSc [5], and Trilinos [22] use one-dimensional
distributions to take advantage of the sparsity structure of
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Figure 3: The communication-computation scheduling of various V-cycle variants. Arrows indicate execution
order, red notations show concurrent communication. Superscripts denote grid levels (e.g.,𝑀0

𝑖 is smoothing on
level 0). Subscripts "L" and "E" represent local and external components. "H" indicates halo exchange, while 𝐻𝑘

𝐴,𝑅

represents merged halo for 𝐴𝑘 and 𝑅𝑘+1
𝑘

.

Algorithm 4 Column-wise algorithm for 𝑦 = 𝐴𝑥 .
1: Compute sendy = 𝐴.exter · 𝑥
2: Begin halo exchange communication
3: Compute 𝑦 = 𝐴.local · 𝑥
4: Wait communication requests and compute 𝑦 := 𝑦 +

recvy

the input matrix. Depending on the partitioning dimension,
there are primary two algorithms: row-wise algorithm and
column-wise algorithm.

Row-wise algorithm. Figure 2 (a)(b) illustrate a 5-point
stencil grid, and the row-wise distribution and the commu-
nication pattern of the corresponding matrix, respectively.
Each process is assigned a contiguous range of rows, which
are further split into the local and the external blocks by
columns. The local block pertains to on-process columns,
while the external block corresponds to off-process columns.
External block can be compressed by columns to minimize
its size. The original indices preserved in the arrays recvptr
and recvind. Messages to be sent to neighbouring processes
are stored in the arrays sendptr and sendind, and must be
prepared during the preprocessing stage.

The row-wise algorithm for computing 𝑦 = 𝐴𝑥 with over-
lapping communication and local computation is detailed in
Algorithm 3. The halo exchange communication is initiated
first using multiple non-blocking send and receive routines.
This allows for concurrent execution of computations on the
local block with the ongoing communication. Once the com-
munication is complete, computations involving the external
block are executed safely.

Column-wise algorithm. The column-wise algorithm
exhibits characteristics similar to the row-wise algorithm.
Each process is assigned a contiguous range of columns.
These columns are then split into the local and the external
blocks by rows.
The column-wise algorithm for 𝑦 = 𝐴𝑥 differs from the

row-wise algorithm. As shown in Algorithm 4, computa-
tions on the external block are performed first to obtain the
result sendy. This is followed by halo exchange communica-
tion while the computations on the local block is executed.
After completing both communication and computations,
the received values recvy are added to their corresponding
positions in 𝑦.
The primary distinction between the two algorithms is

the content of the data exchanged: the row-wise algorithm
requires the exchange of border data of 𝑥 , and the amount
of data received is related to the number of columns in the
external block. In contrast, the column-wise algorithm in-
volves exchanging border data of 𝑦, with the amount of data
sent determined by the number of rows in the external block.

We examine the operators involved in V-cycle: 𝑅𝑘+1
𝑘

, 𝑃𝑘
𝑘+1

and 𝐴𝑘 . Given that 𝑃𝑘
𝑘+1 are characterized as tall-and-skinny

matrices, the row-wise algorithm generally proves more suit-
able for their implementation. This preference is intuitively
justified, as the halo region for the coarse grid typically has
smaller dimensions compared to that of the fine grid. Con-
versely, 𝑅𝑘+1

𝑘
, being short-and-wide matrices, are more effi-

ciently handled using the column-wise algorithm. Thus, in
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Algorithm 5 CR-D V(1,1)-cycle (Version 1)
1: for 𝑘 = 0, · · · , l − 1 (Sequential) do
2: 𝑥𝑘 = (𝑀𝑘

1 )−1𝑏𝑘
3: 𝑟𝑘 = 𝑏𝑘 −𝐴𝑘𝑥𝑘

4: 𝑏𝑘+1 = 𝑅𝑘+1
𝑘

𝑟𝑘

5:
6: 𝑥l = (𝐴l)−1𝑏l
7:
8: for 𝑘 = l − 1, · · · , 0 (Sequential) do
9: 𝑟𝑘 := 𝑟𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1

10: 𝑥𝑘 := 𝑥𝑘 + (𝑀𝑘
2 )−1𝑟𝑘

Algorithm 6 CR-D V(1,1)-cycle (Version 2)
1: for 𝑘 = 0, · · · , l − 1 (Sequential) do
2: 𝑥𝑘 = (𝑀𝑘

1 )−1𝑏𝑘
3: 𝑏𝑘+1 = 𝑅𝑘+1

𝑘
𝑥𝑘

4:
5: 𝑥l = (𝐴l)−1𝑏l
6:
7: for 𝑘 = l − 1, · · · , 0 (Sequential) do
8: 𝑥𝑘 := 𝑥𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1

9: 𝑟𝑘 := 𝑏𝑘 −𝐴𝑘𝑥𝑘

10: 𝑥𝑘 := 𝑥𝑘 + (𝑀𝑘
2 )−1𝑟𝑘

our implementation, matrices𝐴𝑘 and 𝑃𝑘
𝑘+1 are distributed us-

ing the row-wise partitioning, while 𝑅𝑘+1
𝑘

utilizes the column-
wise distribution.

3 Communication-reduced Multiplicative
AMG

In this section, we introduce two novel communication-
reducedmultiplicative variants designed to decrease the com-
munication cost of multigrid V-cycles in large-scale parallel
computing environments.
Our approach builds upon the standard multigrid hierar-

chy {𝐴𝑘 , 𝑃𝑘
𝑘+1, 𝑅

𝑘+1
𝑘

, 𝑀𝑘
1 , 𝑀

𝑘
2 }, as defined in section 2.1. For

level 𝑘 = 0, · · · , l − 1, we consider smoothing operators𝑀𝑘
1

and𝑀𝑘
2 derived from the following matrix splittings:

𝐴𝑘 = 𝑀𝑘
1 − 𝑁𝑘

1 = 𝑀𝑘
2 − 𝑁𝑘

2 . (7)

For non-splitting type smoothing operators, 𝑁𝑘
1 and 𝑁𝑘

2
represents the difference between the smoothing operator
and the system matrix. For instance, 𝑁𝑘

1 can be defined as
𝑁𝑘
1 = 𝑀𝑘

1 −𝐴𝑘 .
To develop our communication-reduced multiplicative

variants, we introduce the following modified operators:
• Modified smoothed interpolation operator:

𝑃𝑘
𝑘+1 = 𝑁𝑘

2 𝑃
𝑘
𝑘+1. (8)

Algorithm 7 CR-M V(1,1)-cycle
1: for 𝑘 = 0, · · · , l − 1 (Sequential) do
2: 𝑥𝑘 = (𝑀𝑘

1 )−1𝑏𝑘
3: 𝑏𝑘+1 = 𝑅𝑘+1

𝑘
𝑥𝑘

4:
5: for 𝑘 = 0, · · · , l − 1 (Parallel) do
6: 𝑟𝑘 = 𝑏𝑘 −𝐴𝑘𝑥𝑘

7:
8: 𝑥l = (𝐴l)−1𝑏l
9:
10: for 𝑘 = l − 1, · · · , 0 (Sequential) do
11: 𝑟𝑘 := 𝑟𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1

12: 𝑥𝑘 := 𝑥𝑘 + (𝑀𝑘
2 )−1𝑟𝑘

• Modified smoothed restriction operator:

𝑅𝑘+1
𝑘

= 𝑅𝑘+1
𝑘

𝑁𝑘
1 . (9)

• Modified bi-smoothing operator:

Ω̂𝑘 = 𝑀𝑘
1 +𝑀𝑘

2 −𝐴𝑘 . (10)
In this section, we show that the residual computations

can be merged with our modified restriction and interpola-
tion operators, respectively. When combining one residual
calculation, CRAMG requires three neighbor communica-
tions, whereas it requires two neighbor communications
when combining two residuals. For this purpose, we propose
two optimization methods, CR-D, CR-M.

3.1 CR-D: Minimize Data Exchange
3.1.1 Fusion of Interpolation and Second Residual Computa-
tion. The CR-D variant fuses a single residual computation.
Here the interpolation step is combined with the second
residual calculation. The derivation of this optimization is
as follows. We begin by substituting the 𝑥𝑘 from line 8 of
Algorithm 1 into line 9:

𝑥𝑘 := (𝑥𝑘 + 𝑃𝑘
𝑘+1𝑥

𝑘+1) + (𝑀𝑘
2 )−1 (𝑏𝑘 −𝐴𝑘 (𝑥𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1))

= 𝑥𝑘 + (𝑀𝑘
2 )−1 (𝑏𝑘 −𝐴𝑘𝑥𝑘 + (𝑀𝑘

2 −𝐴𝑘 )𝑃𝑘
𝑘+1𝑥

𝑘+1)
= 𝑥𝑘 + (𝑀𝑘

2 )−1 (𝑏𝑘 −𝐴𝑘𝑥𝑘 + 𝑁𝑘
2 𝑃

𝑘
𝑘+1𝑥

𝑘+1)

= 𝑥𝑘 + (𝑀𝑘
2 )−1 (𝑟𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1)

(11)
The last line of equation (11) introduces themodified smoothed
interpolation operator 𝑃𝑘

𝑘+1 and reuses the vector 𝑟𝑘 from
the first residual computation (line 3 in Algorithm 1).

Compared to themultiplicative V(1,1)-cycle, the CR-D vari-
ant reduces one matrix-vector multiplication and requires
only three neighbor communications per level. Algorithm 5
shows the steps for the first version of the CR-D variant.
Figure 3(b) illustrates the scheduling process of CRAMG in
the corresponding CR-D mode. Compared to the scheduling
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recvx recvy

recvbuf

MPI_Irecv MPI_IrecvMPI_Irecv

sendx sendy = R.exter * x

sendbuf

MPI_Isend MPI_IsendMPI_Isend

(a) Combined sending (b) Combined receiving

Figure 4: The combination of two halos for compute 𝑅𝑘+1
𝑘

𝑥𝑘 and 𝐴𝑘𝑥𝑘 in Algorithm 7. Two messages sent to the
same destination or received from the same source can be merged to one.

process of the standard AMG which is shown in Figure 3(a),
our CR-D reduces the halo exchange associated with 𝐴𝑘 on
the second residual computation of V-cycle.

3.1.2 Fusion of First Residual Computation and Restriction.
An alternative implementation of the CR-D model is to com-
bine the first residual computation with the restriction step.
The derivation of this combination is as follows:

𝑏𝑘+1 = 𝑅𝑘+1
𝑘

(𝑏𝑘 −𝐴𝑘𝑥𝑘 ) = 𝑅𝑘+1
𝑘

(𝑀𝑘
1 −𝐴𝑘 )𝑥𝑘

= 𝑅𝑘+1
𝑘

𝑁𝑘
1 𝑥

𝑘 = 𝑅𝑘+1
𝑘

𝑥𝑘 .
(12)

The details of CR-D Version 2 are outlined in Algorithm 6.
Both implementations of the CR-D variant are functionally
equivalent. Unless stated otherwise, the subsequent sections
refer to the first implementation of the CR-D variant.

3.2 CR-M: Minimize Messages
In the two implementations of CR-D, only one residual op-
erator is fused at a time. To further reduce the number of
messages, we develope the CR-M variant. As described in
Algorithm 7, the CR-M variant combines the residual com-
putations with the restriction and interpolation operators.

Figure 3(c) illustrates the details of our communication and
computation scheduling for CR-M. Tomaximize communication-
computation overlap, we strategically schedule the compu-
tation of 𝐴𝑘

L before 𝑅
𝑘
L , thereby enhancing its overlap with

the 𝐻𝑘
𝐴,𝑅

communication. Similarly, the computation of 𝐴𝑘
E

is scheduled after 𝑃𝑘L to optimize its overlap with 𝐻𝑘
𝑃
. Com-

pared to the standard multiplicative version and the CR-D
variants, CR-M requires only two neighbor communications
per level.

Although this variant still requires one residual computa-
tion (as shown in line 6 of Algorithm 7), we show that the
communication for 𝑅𝑘+1

𝑘
𝑥𝑘 can be efficiently combined with

that of 𝐴𝑘𝑥𝑘 . When these two messages are sent to the same
destination or received from the same source, they can be
merged, significantly reducing the total number of messages
exchanged. The details of this merging process are illustrated
in Figure 4.
CR-M for Gauss-Seidel. CR-M can be further modified
for some split smoothers. Specifically, by introducing 𝑧𝑘 =

𝑀𝑘
2 𝑥

𝑘 + 𝑟𝑘 in line 6 of Algorithm 7, we derive:

𝑧𝑘 = 𝑀𝑘
2 𝑥

𝑘 + 𝑟𝑘 = 𝑀𝑘
2 𝑥

𝑘 + 𝑏𝑘 −𝐴𝑘𝑥𝑘

= (𝑀𝑘
2 +𝑀𝑘

1 −𝐴𝑘 )𝑥𝑘 = Ω̂𝑘𝑥𝑘 .
(13)

Lines 11 and 12 of Algorithm 7 can then be reformulated as:

𝑥𝑘 := 𝑥𝑘 + (𝑀𝑘
2 )−1 (𝑟𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1)

= 𝑥𝑘 + (𝑀𝑘
2 )−1 (−𝑀𝑘

2 𝑥
𝑘 + 𝑧𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1)

= (𝑀𝑘
2 )−1 (𝑧𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1).

(14)

This reformulation leads to another variant, detailed in
Algorithm 8. The algorithm replaces the computation of
𝑏𝑘 −𝐴𝑘𝑥𝑘 with Ω̂𝑘𝑥𝑘 , offering notable benefits for specific
split smoothers.
For example, consider forward Gauss-Seidel as the pre-

smoother𝑀𝑘
1 = 𝐷𝑘 + 𝐸𝑘 , and backward Gauss-Seidel as the

post-smoother𝑀𝑘
2 = 𝐷𝑘 + 𝐹𝑘 , where 𝐷𝑘 , 𝐸𝑘 , and 𝐹𝑘 denote

the diagonal, strictly lower triangular, and strictly upper
triangular components of 𝐴𝑘 , respectively. This configura-
tion is the default smoother option in BoomerAMG from
Hypre-2.31.0.
In this case, the modified bi-smoothing operator Ω̂𝑘 re-

duces to:
Ω̂𝑘 = 𝑀𝑘

1 +𝑀𝑘
2 −𝐴𝑘 = 𝐷𝑘 . (15)

Consequently, Algorithm 8 achieves significant improvement
over Algorithm 7, nearly eliminating one matrix-vector mul-
tiplication operation.

3.3 Comparison to Mult-additive variant
Although the CR-D variant (Algorithm 5) and the multi-
additive variant (Algorithm 2, proposed in [33]) share notable
similarities, their key distinction lies in the choice of modified
interpolation and restriction operators.

According to equation (3), the smoothed restriction opera-
tor 𝑅

𝑘+1
𝑘 is defined as the product of the restriction operator

𝑅𝑘+1
𝑘

and the pre-smoothing iteration term 𝐼 −𝐴𝑘 (𝑀𝑘
1 )−1. If

the smoothing operators are defined based on matrix split-
tings (see equation (7)), 𝑅

𝑘+1
𝑘 and 𝑅𝑘+1

𝑘
are related by the

following expression:

𝑅
𝑘+1
𝑘 = 𝑅𝑘+1

𝑘
(𝑀𝑘

1 )−1. (16)
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Algorithm 8 CR-M V(1,1)-cycle for Gauss-Seidel
1: for 𝑘 = 0, · · · , l − 1 (Sequential) do
2: 𝑥𝑘 = (𝑀𝑘

1 )−1𝑏𝑘
3: 𝑏𝑘+1 = 𝑅𝑘+1

𝑘
𝑥𝑘

4:
5: for 𝑘 = 0, · · · , l − 1 (Parallel) do
6: 𝑧𝑘 = Ω̂𝑘𝑥𝑘

7:
8: 𝑥l = (𝐴l)−1𝑏l
9:
10: for 𝑘 = l − 1, · · · , 0 (Sequential) do
11: 𝑧𝑘 := 𝑧𝑘 + 𝑃𝑘

𝑘+1𝑥
𝑘+1

12: 𝑥𝑘 := (𝑀𝑘
2 )−1𝑧𝑘

Similarly, from equation (2), the smoothed interpolation op-
erator 𝑃

𝑘

𝑘+1 is the product of the post-smoothing iteration
term 𝐼 −𝐴𝑘 (𝑀𝑘

2 )−1 and the interpolation operator 𝑃𝑘
𝑘+1, and

it follows that
𝑃
𝑘

𝑘+1 = (𝑀𝑘
2 )−1𝑃𝑘𝑘+1. (17)

For Jacobi and polynomial-type preconditioners (where
(𝑀𝑘

𝑗 )−1 can be expressed as a matrix polynomial of 𝐴𝑘 , 𝑗 =

1, 2), explicitly computing 𝑅
𝑘+1
𝑘 or 𝑃

𝑘

𝑘+1 is feasible, albeit with
significant memory requirements. However, for precondi-
tioners like Gauss-Seidel and incomplete LU factorization
(ILU), the situation becomes considerably more complex.
These methods require applying (𝑀𝑘

𝑗 )−1 to a sparse matrix,
which can lead to fill-in phenomena and result in computa-
tional complexity that is difficult to predict in advance.
In contrast, our approach replaces 𝑅

𝑘+1
𝑘 and 𝑃

𝑘+1
𝑘 with

𝑅𝑘+1
𝑘

= 𝑅𝑘+1
𝑘

(𝑀𝑘
1 −𝐴𝑘 ) and 𝑃𝑘+1

𝑘
= (𝑀𝑘

2 −𝐴𝑘 )𝑃𝑘
𝑘+1, effectively

circumventing the aforementioned computational challenges.
Furthermore, we introduce an efficient method for apply-
ing 𝑃𝑘+1

𝑘
and 𝑅𝑘+1

𝑘
by reordering the smoothing operations

to overlap computation with communication, as shown in
Figures 3 and 4.

4 Use of Block Jacobi Smoother
In our AMG implementation, we employ block-Jacobi-like
methods as both the smoother and the coarsest grid solver.
This approach has been demonstrated to effectively achieve
a good balance between the acceleration of AMG methods
and parallel performance [2, 37]. Moreover, the choice of
smoother is intrinsically linked to the generation of the mod-
ified smoothed interpolation operator 𝑃𝑘

𝑘+1.
We partition matrix 𝐴𝑘 into 𝑝 × 𝑝 blocks. Let 𝐴𝑘

𝑖𝑖 denote
the 𝑖-th diagonal block of 𝐴𝑘 , and 𝐴𝑘

ofd represent the matrix
of off-diagonal block. Thus, 𝐴𝑘 can be decomposed as

𝐴𝑘 = 𝐴𝑘
dia +𝐴𝑘

ofd. (18)

with 𝐴𝑘
dia = diag(𝐴𝑘

11, 𝐴
𝑘
22, ..., 𝐴

𝑘
𝑝𝑝 ).

In this context, the smoother 𝑀𝑘 is also chosen to be a
block diagonal matrix:

𝑀𝑘 = diag(𝑀𝑘
11, 𝑀

𝑘
22, ..., 𝑀

𝑘
𝑝𝑝 ). (19)

We consider two types of smoothers as follows.

4.1 Block Jacobi Gauss-Seidel
4.1.1 Smoothing. When applying Gauss-Seidel relaxation
in a V-cycle, it is common to use different smoothers for
pre-smoothing and post-smoothing. Specifically, the pre-
smoother𝑀𝑘

1 , which corresponds to forward Gauss-Seidel,
is defined as the block diagonal matrix with

(𝑀𝑘
1 )𝑖𝑖 = 𝐷𝑘

𝑖𝑖 − 𝐸𝑘𝑖𝑖 , (20)

and the post-smoother𝑀𝑘
2 , corresponding to backwardGauss-

Seidel, is defined as the block diagonal matrix with

(𝑀𝑘
2 )𝑖𝑖 = 𝐷𝑘

𝑖𝑖 − 𝐹𝑘𝑖𝑖 , (21)

where𝐴𝑘
𝑖𝑖 = 𝐷𝑘

𝑖𝑖 −𝐸𝑘𝑖𝑖 −𝐹𝑘𝑖𝑖 , with𝐷𝑘
𝑖𝑖 representing the diagonal

part, 𝐸𝑘𝑖𝑖 the strict lower triangular part, and 𝐹𝑘𝑖𝑖 the strict
upper triangular part of𝐴𝑘

𝑖𝑖 . To preserve the symmetry of the
V-cycle operator, we use a symmetric Gauss-Seidel relaxation
at the coarsest level. 𝐵l is defined as the block diagonal
matrix with

𝐵l
𝑖𝑖 = (𝐷l

𝑖𝑖 − 𝐹l𝑖𝑖 )−1𝐷l
𝑖𝑖 (𝐷l

𝑖𝑖 − 𝐸l𝑖𝑖 )−1 . (22)

The implementation of CR-MV-cycle for Gauss-Seidel smooth-
ing is very efficient. This is because Ω̂𝑘 can be expressed as

Ω̂𝑘 = 𝑀𝑘
1 +𝑀𝑘

2 −𝐴𝑘 = 𝐷𝑘 −𝐴𝑘
ofd, (23)

where the off-diagonal non-zero elements on processor are
eliminated.

Furthermore, we can introduce a relaxation factor𝜔 , defin-
ing (𝑀𝑘

1 )𝑖𝑖 =
1
𝜔
𝐷𝑘
𝑖𝑖 − 𝐸𝑘𝑖𝑖 and (𝑀𝑘

2 )𝑖𝑖 =
1
𝜔
𝐷𝑘
𝑖𝑖 − 𝐹𝑘𝑖𝑖 . This leads

to SOR smoothing, providing a more comprehensive range
of choices. This part of the content is beyond the scope of
this paper.

4.1.2 Generation of modified smoothed interpolation opera-
tor. Typically, the Galerkin product for coarse grid genera-
tion, 𝐴𝑘+1 = 𝑅𝑘+1

𝑘
𝐴𝑘𝑃𝑘

𝑘+1, involves two sparse matrix-matrix
multiplications: 𝑍𝑘 = 𝐴𝑘𝑃𝑘

𝑘+1 and 𝐴𝑘+1 = 𝑅𝑘+1
𝑘

𝑍𝑘 , utilizing
an intermediate matrix 𝑍𝑘 . To enhance efficiency, the gen-
eration of the modified smoothed interpolation operator,
𝑃𝑘
𝑘+1 = 𝑁𝑘

2 𝑃
𝑘
𝑘+1, can be combined with 𝐴𝑘𝑃𝑘

𝑘+1.
According to equation (21), we can get

𝑁𝑘
2 = diag(𝐸𝑘11, ..., 𝐸𝑘𝑝𝑝 ) −𝐴𝑘

ofd . (24)

The computations are executed using a row-wise algorithm.
For each row, the process initially computes 𝑁𝑘

2 𝑃
𝑘
𝑘+1 and

stores the result in 𝑃𝑘
𝑘+1. Subsequently, the remaining part
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𝑀𝑘
2 𝑃

𝑘
𝑘+1 is computed to obtain 𝑍𝑘 for that row. This approach

reveals that generating 𝑃𝑘
𝑘+1 incurs no additional computa-

tional cost beyond storing the results.

4.2 Block Jacobi ILU(0)
4.2.1 Smoothing. Alternatively, we consider using the in-
complete LU factorizationwith zero fill-in (ILU(0)) as a smoother,
which often offers greater robustness compared to the Gauss-
Seidel method. For a V-cycle applying block Jacobi ILU(0),
pre-smoother 𝑀𝑘

1 and post-smoother 𝑀𝑘
2 is defined as the

block diagonal matrices with

(𝑀𝑘
1 )𝑖𝑖 = (𝑀𝑘

2 )𝑖𝑖 = 𝐿𝑘𝑖𝑖𝑈
𝑘
𝑖𝑖 , (25)

where 𝐿𝑘𝑖𝑖 and𝑈
𝑘
𝑖𝑖 are the ILU(0) factors of 𝐴

𝑘
𝑖𝑖 .

4.2.2 Generation of modified smoothed interpolation oper-
ator. For a block Jacobi ILU(0) smoother, the matrix 𝑁𝑘

2 is
defined as

𝑁𝑘
2 = diag((𝑁𝑘

2 )11, ..., (𝑁𝑘
2 )𝑝𝑝 ) −𝐴𝑘

ofd, (26)

where (𝑁𝑘
2 )𝑖𝑖 = 𝐿𝑘𝑖𝑖𝑈

𝑘
𝑖𝑖 −𝐴𝑘

𝑖𝑖 , for 𝑖 = 1, ..., 𝑝 . 𝐿𝑘𝑖𝑖 and𝑈
𝑘
𝑖𝑖 repre-

sent the ILU(0) factors of 𝐴𝑘
𝑖𝑖 , ensuring that the elements of

(𝑁𝑘
2 )𝑖𝑖 are zero in locations corresponding to the nonzero

elements of 𝐴𝑘
𝑖𝑖 . This characteristic allows for reduced com-

putation and memory usage.
The computational cost for 𝑁𝑘

2 𝑃
𝑘
𝑘+1 and 𝐴𝑘𝑃𝑘

𝑘+1 can be
further optimized by leveraging the shared component 𝐴𝑘

ofd
between 𝑁𝑘

2 and 𝐴𝑘 . Moreover, 𝑁𝑘
2 𝑃

𝑘
𝑘+1 incurs no additional

communication costs, as all data exchanges are encompassed
in the computation of 𝐴𝑘

ofd𝑃
𝑘
𝑘+1.

4.3 Truncation
Moreover, CR-M additionally requires 𝑅𝑘+1

𝑘
, presenting a

more challenging computational task. For symmetric (or
slightly nonsymmetric) matrices, the optimal approach in-
volves first computing 𝑃𝑘

𝑘+1, followed by 𝑅
𝑘+1
𝑘

= (𝑃𝑘
𝑘+1)

𝑇 . This
method incursminimal additional computational cost. In con-
trast, for asymmetric matrices, the generation of 𝑅𝑘+1

𝑘
may

necessitate computing the matrix-matrix product 𝑅𝑘+1
𝑘

𝑁 1
𝑘
,

which can be computationally expensive.
The matrix 𝑃𝑘

𝑘+1 typically exhibits a large template, po-
tentially leading to increased communication costs [33]. A
common approach to address this issue is to truncate 𝑃𝑘

𝑘+1,
using techniques similar to those employed for truncating
the interpolation matrix 𝑃𝑘

𝑘+1 [14, 30].
• Selecting a truncation factor 𝜃 and excluding weights
with an absolute value less than this factor, i.e., those
for which | (𝑃𝑘

𝑘+1)𝑖 𝑗 | < 𝜃 ;
• Restricting the number of coefficients per row by re-
taining only the 𝑘𝑚𝑎𝑥 weights with the highest absolute
values.

Table 1: Memory and flops estimates for various V-
cycle variants.

memory flops

Mult.GS
l−1∑
𝑘=0

[nnz(𝐴𝑘 ) +

nnz(𝑅𝑘+1
𝑘

) + nnz(𝑃𝑘
𝑘+1)]

l−1∑
𝑘=0

[4nnz(𝐴𝑘 ) +

2nnz(𝑅𝑘+1
𝑘

) + 2nnz(𝑃𝑘
𝑘+1)]

CR-D.GS
l−1∑
𝑘=0

[nnz(𝐴𝑘 ) +

nnz(𝑅𝑘+1
𝑘

) + nnz(𝑃𝑘
𝑘+1)]

l−1∑
𝑘=0

[3nnz(𝐴𝑘 ) +

2nnz(𝑅𝑘+1
𝑘

) + 2nnz(𝑃𝑘
𝑘+1)]

CR-M.GS
l−1∑
𝑘=0

[nnz(𝐴𝑘 ) +

nnz(𝑅𝑘+1
𝑘

) + nnz(𝑃𝑘
𝑘+1)]

l−1∑
𝑘=0

[2nnz(𝐴𝑘 ) +

2nnz(𝑅𝑘+1
𝑘

) + 2nnz(𝑃𝑘
𝑘+1)]

Mult.ILU
l−1∑
𝑘=0

[2nnz(𝐴𝑘 ) +

nnz(𝑅𝑘+1
𝑘

) + nnz(𝑃𝑘
𝑘+1)]

l−1∑
𝑘=0

[8nnz(𝐴𝑘 ) +

2nnz(𝑅𝑘+1
𝑘

) + 2nnz(𝑃𝑘
𝑘+1)]

CR-D.ILU
l−1∑
𝑘=0

[2nnz(𝐴𝑘 ) +

nnz(𝑅𝑘+1
𝑘

) + nnz(𝑃𝑘
𝑘+1)]

l−1∑
𝑘=0

[6nnz(𝐴𝑘 ) +

2nnz(𝑅𝑘+1
𝑘

) + 2nnz(𝑃𝑘
𝑘+1)]

CR-M.ILU
l−1∑
𝑘=0

[2nnz(𝐴𝑘 ) +

nnz(𝑅𝑘+1
𝑘

) + nnz(𝑃𝑘
𝑘+1)]

l−1∑
𝑘=0

[6nnz(𝐴𝑘 ) +

2nnz(𝑅𝑘+1
𝑘

) + 2nnz(𝑃𝑘
𝑘+1)]

For the truncation of 𝑅𝑘+1
𝑘

, we consider two scenarios.
When 𝑅𝑘+1

𝑘
is obtained via 𝑅𝑘+1

𝑘
= (𝑃𝑘

𝑘+1)
𝑇 , no additional

truncation is necessary. Alternatively, if 𝑅𝑘+1
𝑘

is computed
using 𝑅𝑘+1

𝑘
= 𝑅𝑘+1

𝑘
𝑁𝑘
1 , the same truncation methods can be

applied to (𝑅𝑘+1
𝑘

)𝑇 . Adjusting the truncation parameters is
crucial to prevent an increase in the number of iterations for
convergence, which could negate the benefits of truncation.
Through numerical experiments, we established that limit-
ing the matrix to 24 nonzeros per row optimally preserves
numerical stability across most problem while maintaining
sparsity. This value serves as our default truncation thresh-
old.

5 Experimental Setup
5.1 Evaluation Platforms
The experiments in this section were conducted on a 128-
node cluster, with each node equipped with dual Intel Xeon
Platinum 8358P CPUs, offering 64 cores per node at 2.60 GHz.
This configuration provides a total of 8,192 cores across the
cluster. For the software environment, we employed MPICH-
4.1.2 as the MPI library and Intel Compiler 23.0.

5.2 Experiment Details
We implemented the CRAMG variants in the YHAMG alge-
braic multigrid package [19, 40], incorporating block Jacobi
Gauss-Seidel and block Jacobi ILU(0) smoothers. The AMG
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Table 2: Comparison of CR variants and the multiplicative method for the 7-point stencil problem with a 100 ×
100 × 100 cube per core, using 8,192 cores.

setup time solve time iter cycle time memory flops #msgs data exch.
Mult.GS 3.0797 7.5661 27 0.1785 1.0000 1.0000 1.0000 1.0000
CR-D.GS 3.4551 6.8150 28 0.1563 1.2364 0.9648 0.7662 0.5892
CR-M.GS 3.6190 6.2455 27 0.1400 1.4722 0.9399 0.6844 0.6304
Mult.ILU 4.4598 9.8300 26 0.2607 1.0000 1.0000 1.0000 1.0000
CR-D.ILU 5.8600 8.1711 27 0.2176 1.2819 0.9389 0.7672 0.5883
CR-M.ILU 6.2995 8.5245 26 0.2379 1.5634 1.1452 0.6861 0.6286
Hypre.wJ 7.1656 12.3423 39 / / / / /
Hypre.MA 8.2322 10.552 39 / / / / /

Table 3: Comparison of CR variants and themultiplicativemethod for the 27-point stencil problemwith a 80×80×80
cube per core, using 8,192 cores.

setup time solve time iter cycle time memory flops #msgs data exch.
Mult.GS 2.0377 5.8727 25 0.1404 1.0000 1.0000 1.0000 1.0000
CR-D.GS 2.2833 5.3332 26 0.1188 1.1275 0.8436 0.7367 0.5503
CR-M.GS 2.3163 4.5252 25 0.0993 1.2551 0.6995 0.6462 0.5738
Mult.ILU 2.3067 9.8510 24 0.2557 1.0000 1.0000 1.0000 1.0000
CR-D.ILU 3.2952 9.0409 25 0.2120 1.1639 0.8037 0.7379 0.5491
CR-M.ILU 3.3810 9.4042 25 0.2256 1.3277 0.9168 0.6480 0.5714
Hypre.wJ 2.9102 13.1632 34 / / / / /
Hypre.MA 3.5859 8.3708 32 / / / / /

configuration employed HMIS coarsening and ext+i inter-
polation using matrix-matrix multiplication (truncated to a
maximum of 4 elements per row), along with one level of
aggressive coarsening.

For CRAMG, we applied additional truncation to the mod-
ified smoothed interpolation operator, limiting it to a maxi-
mum of 24 elements per row. In the case of symmetric sys-
tems, we compute the transpose of the modified smoothed
interpolation operator to derive the modified smoothed re-
striction operator. This configuration has been found to yield
optimal performance across our test cases.

To make a fair comparison, we refined the data structure
for Gauss-Seidel smoothing by partitioning the local matrix
into upper triangular, lower triangular, and diagonal com-
ponents. In multiplicative and CR-D methods, we rewrote
the matrix-vector multiplication following pre-smoothing to
reduce floating-point operations, leveraging the equation:

𝑟𝑘 = 𝑏𝑘 −𝐴𝑘𝑥𝑘 = 𝑁𝑘
1 𝑥

𝑘 . (27)

This optimization is made possible by the condition𝑀𝑘
1 𝑥

𝑘 =

𝑏𝑘 . For post-smoothing in multiplicative method, we utilized
the more common matrix split iteration:

𝑥𝑘 := (𝑀𝑘
2 )−1 (𝑏𝑘 + 𝑁𝑘

2 𝑥
𝑘 ). (28)

Based on these details, we provide the memory and flops
estimates for various V-cycle methods in Table 1.

5.3 Evaluation Methodology
To simulate a more communication-intensive scenario, we
employed a configuration of 64 processes with one thread
per node, utilizing up to 8,192 processes in total. In addition
to runtime, our evaluation encompassed several key metrics
for each variant: memory requirements, floating-point oper-
ations (flops), number of messages exchanged, and total vol-
ume of data transferred. We introduced a change factor [33],
calculated by dividing the value of the CR variant by the
value of the multiplicative method. A change factor less than
one indicates an improvement. For memory and flops, the
change factors were evaluated based on the data presented in
Table 1. Our analysis consisted of comprehensive weak and
strong scalability studies for 7- and 27-point stencil problems.
We also examined the impact of asymmetry on CR methods
through convection diffusion problem tests. Furthermore, we
expanded our testing to matrices from various fields in the
SuiteSparse collection and compared ourmethods against the
mult-additive approach (Hypre.MA) in the Hypre v2.31.0.
We tested BoomerAMG using a weighted Jacobi smoother
(Hypre.wJ) with 𝜔 = 0.75, as the multi-additive method
for GS smoothing is not yet supported in the latest Hypre
version. The selected parameters are consistent with those
used in our YHAMG implementation.

In our experiments, AMG is primarily used as a precondi-
tioner for the CG method in symmetric systems, while for
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Figure 5: Comparison of various AMG methods for Problem 7pt and Problem 27pt with up to 8192 cores. For
Problem 7pt, each core processes a 100 × 100 × 100 cube. For Problem 27pt, an 80 × 80 × 80 cube is used per core. All
algorithms employ the stopping criterion ∥𝑏 −𝐴𝑥 ∥2 < 10−12∥𝑏∥2. (Above: solve phase, Below: setup phase)
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Figure 6: Comparison of various V-cycle for Problem 7pt and Problem 27pt, over multiplicative method on a single
node with 64 cores, utilizing up to 8192 cores. For Problem 7pt, processing an 800 × 800 × 800 cube. For Problem
27pt, processing a 640 × 640 × 640 cube. (Above: solve phase, Below: setup phase)

nonsymmetric systems, we employ AMG as a preconditioner
for GMRES with a restart parameter of 40.

6 Experimental Results
6.1 Large-scale Performance Analysis
In this section, we examine the 3D Poisson equation−Δ𝑢 = 𝑓

with Dirichlet boundary conditions 𝑢 = 0. Our experiments
focus on two problems:
Problem 7pt: This problem is discretized using second-

order central finite differences on a uniform grid, resulting
in a symmetric positive definite linear system with a 7-point
stencil.

Problem 27pt: This problem is also symmetric positive
definite but exhibits a denser sparsity pattern with 27-point
stencil.

Tables 2 and 3 compare CR variants with the multiplicative
method for Problems 7pt (1003 cube per core) and Problems
27pt (803 cube per core), respectively. The right-hand side
vector 𝑏 is computed as 𝑏 = 𝐴𝑒 , where 𝑒 is a vector of all
ones. Both experiments use AMG as a CG preconditioner on
8,192 cores, with a stopping criterion of |𝑏−𝐴𝑥 |2 < 10−12 |𝑏 |2.
We report AMG setup and solve times, iteration count, time
per cycle, and change factors for memory usage, flops, mes-
sage count, and data exchange. The CR variants converge at
about the same rate as the standard multiplication method,
whereas the Hypre methods converge at a much slower rate.



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Yuan et al.

Table 4: Comparison of CR variants and the multiplicative method for Problem diffconv with a 100× 100× 100 cube
per core, using 4,096 cores. Results are recorded for 𝑎 = 1, 10, and 100.

𝑎 = 1 𝑎 = 10 𝑎 = 100
setup time solve time iter setup time solve time iter setup time solve time iter

Mult.GS 3.0662 7.4444 25 3.0481 8.6390 28 3.0418 8.3739 27
CR-D.GS 3.3579 6.8828 25 3.3480 7.5412 28 3.3681 7.4651 27
CR-M(T).GS 3.5035 6.5015 25 3.5504 8.4132 32 3.5922 36.075 138
CR-M.GS 4.4479 6.4815 25 4.5033 7.2449 28 4.5125 7.1181 27
Mult.ILU 4.2105 9.5727 23 4.1715 9.7014 26 4.1997 8.2471 21
CR-D.ILU 5.9140 8.2885 23 5.9148 8.6646 26 5.9576 7.3437 21
CR-M(T).ILU 6.1981 8.8625 23 6.2268 10.764 30 6.2444 18.756 53
CR-M.ILU 7.9157 8.8595 23 8.0556 9.1361 25 8.0925 8.0992 22
Hypre.wJ 5.7392 18.881 38 5.6222 25.561 51 5.8287 30.510 61
Hypre.MA 6.1646 14.460 39 6.0960 21.650 58 6.3992 48.957 129

CR methods demonstrate significant improvements in com-
munication efficiency. CR-D achieves the smallest data ex-
change, reducing it by 41-45% compared to the multiplica-
tive method, while also decreasing message count by 23-26%.
CR-M excels in minimizing message count, with a 31-35% re-
duction compared to the multiplicative method, and reduces
data exchange by 37-43%. Furthermore, the solve time analy-
sis reveals that CR-M performs best for GS smoothing, with
a speedup of 1.21-1.30x over the classical multiplication
method and 1.69-1.85x over Hypre’s mult-additive method.
In contrast, CR-D demonstrates a more pronounced advan-
tage when employing ILU smoothing, achieving speedups of
1.09-1.20x over the multiplicative method. For the 7-point
problem, CR-D exhibits a 1.29x performance improvement
compared to the mult-additive method. While in the case of
the 27-point problem, the mult-additive method outperforms
CR-D.
Both CR variants lead to an increase in setup time. Com-

pared to the multiplicative method, the setup time of CR-D
increases by 12.2% for GS smoothing and 31.4% for ILU. CR-
M requires even more setup time, increasing by 17.5% for GS
and 41.3% for ILU. Detailed results are presented in Tables 2
and 3. However, in scenarios where multiple solutions with
different right-hand sides or preconditioner are used across
time steps [21, 41], the initial computational investment can
yield significant benefits in subsequent iterations, potentially
enhancing overall performance.

6.2 Weak and Strong Scaling Tests
Figure 5 presents the weak scalability test results of various
AMG methods. The evaluation is conducted by solving Prob-
lem 7pt with a 100 × 100 × 100 cube per core and Problem
27pt with an 80 × 80 × 80 cube per core, utilizing up to 8,192
cores. Analysis of the results indicates that as the core count
increases, the solve time of CRAMG grows at a slower rate
compared to the multiplicative method, suggesting superior

parallel efficiency of CRAMG. Concurrently, the setup time
of CRAMG increases also slowly with the increase in core
count, indicating that CRAMGmaintains robust scalability in
the setup phase as well. It is noteworthy that our method out-
performs Hypre’s mult-additive method in almost all cases
(except for the 27-point problem, where Mult-additive out-
performs the CR method with ILU smoothing).

Figure 6 illustrates the strong scalability results for various
methods. This evaluation involves solving Problem 7pt on a
800 × 800 × 800 cube and Problem 27pt on a 640 × 640 × 640
cube, utilizing up to 8,192 cores. As the number of kernels
increases, the CR method significantly outperforms both the
multiplicative and multi-additive methods in the solve phase;
while in the setup phase, the CRAMG method maintains al-
most the same speedup ratio as the multiplicative method in
GS smoothing processing, while significantly outperforming
the Hypre’s methods.

6.3 Diffusion Convection Problem
In this section, we examine the following problem:
Problem convdiff: This is a 3D diffusion-convection

equation −Δ𝑢 + 𝑎∇ · 𝑢 = 𝑓 with Dirichlet boundary condi-
tions. The diffusion part is discretized using central finite
differences, while upwind finite differences are used for the
advection term. This results in an asymmetric problem. The
degree of asymmetry depends on the value of 𝑎. As 𝑎 in-
creases, the asymmetry of the problem increases accordingly.
When 𝑎 = 0, the problem reduces to Problem 7pt.

We demonstrate that the CR methods are effective in solv-
ing asymmetric problems. For such cases, CR-M requires
additional computation of 𝑅𝑘

𝑘+1 during the AMG setup phase.
In weakly asymmetric scenarios, 𝑅𝑘

𝑘+1 can be approximated
by (𝑃𝑘+1

𝑘
)𝑇 to reduce computational overhead. We exam-

ined the impact of asymmetry on CR methods, include setup
time increment, through Problem convdiff tests with 𝑎 =
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Table 5: Sparse matrices from SuiteSparse.

# matrix n nnz symm. smooth
A thermal2 1,228,045 8,580,313 yes GS
B atmosmodd 1,270,432 8,814,880 no GS
C atmosmodl 1,489,752 10,319,760 no GS
D Transport 1,602,111 23,487,281 no GS
E Serena 11,391,349 64,131,971 yes SOR
F ecology2 999,999 4,995,991 yes ILU
G cage14 1,505,785 27,130,349 no ILU
H CoupCons3D 416,800 17,277,420 no ILU

1, 10, and 100 (representing increasing asymmetry). In this
context, we introduce CR-M(T), which denotes the CR-M
method that employs (𝑃𝑘+1

𝑘
)𝑇 as an approximation for 𝑅𝑘

𝑘+1.
The experimental results of our investigation are presented
in Table 4. The solution method employed AMG as a pre-
conditioner for the GMRES with restart 40. We conducted
evaluations on a 100×100×100 cube per core, utilizing 4,096
cores. The solution process employed a stopping criterion
of ∥𝑏 −𝐴𝑥 ∥2 < 10−12∥𝑏∥2. The results in Table 4 show that
CR-D and CR-M effectively solve asymmetric problems. For
𝑎 = 1, CR-M(T) maintains convergence speed comparable
to CR-M, demonstrating the feasibility of the approxima-
tion in weakly asymmetric cases. As asymmetry increases,
with 𝑎 = 10, CR-M(T) shows a slight increase in iteration
count compared to CR-M. However, at 𝑎 = 100, CR-M(T)
shows significantly more iterations, indicating the approxi-
mation’s limitations for highly asymmetric problems. The
mult-additive method also struggles with high asymmetry,
which requires more iterations than other variants.

6.4 Matrices from Suitesparse
We have selected a number of sparse matrices from SuiteS-
parse [13] that are suitable for AMG solution methods to
assess the practical feasibility and performance of CR vari-
ants in the real world. The full list of selected matrices is
given in Table 5.
This experiments were conducted on a single compute

node equipped with dual Intel Xeon Gold 6348 processors
at 2.6GHz, for a total of 56 physical cores. We utilized all 56
cores by running 56 MPI processes. To optimize load balanc-
ing and minimize communication overhead, we employed
ParMETIS for matrix partitioning [23]. For matrices that do
not include a predefined right-hand side vector 𝑏, we gener-
ate 𝑏 by computing𝑏 = 𝐴𝑒 , where 𝑒 is a vector of all ones. We
use AMG as the preconditioner and use CG for symmetric
matrices and GMRES with restart 40 for nonsymmetric ma-
trices. For each matrix, we selected an appropriate smoother
from among GS, SOR, or ILU. The solution process adheres
to the stopping criterion ∥𝑏 −𝐴𝑥 ∥2 < 10−12∥𝑏∥2.
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Figure 7: Performance of various V-cycle variants on a
single node.

The experimental results are presented in Figure 7. When
using GS or SOR smoothing, CRmethods consistently exhibit
better speedup compared to the multiplicative method. The
CR-M variant generally achieves the highest speedup, closely
followed by the CR-D variants. The CR-M variant typically
achieves a speedup of 1.05x to 1.16x over the multiplicative
method. Although CR-D shows slightly lower speedup than
CR-M, it still outperforms the classical multiplicative version,
with speedups ranging from 1.03x to 1.09x. For ILU smooth-
ing, CR-M may sometimes be slower than the multiplicative
version, but CR-D consistently outperforms it, with notable
speedups of up to 1.16x on matrix H.

7 Related Works
Many methods have been proposed to reduce communica-
tion costs in AMG, and most of them focus on a redesign
of the method or on the underling sparse matrix operations.
Aggressive coarsening [14, 15, 38] reduces the density of
coarse levels and therefore the communication cost. Simi-
larly, the smoothed aggregation approach coarsens a large
number of fine grids into a single coarse grid [31, 32]. Some
methods systematically remove entries on coarse grids, lead-
ing to improved commmunication cost [7, 17]. The additive
version of AMG [10] is revisited to improve parallelism and
communication-computation overlapping [20, 33] and re-
duce synchronization [36]. Communication-avoiding tech-
niques can also be used to improve the performance of multi-
grid methods, for example s-step Krylov subspace methods
is used as the bottom solver of geometric multigrid in [35].

Topology-aware methods and message agglomeration are
also used to reduce the AMG communication costs [25, 29].
Some node-aware communication approaches are used to
reduce the number and size of internode messsages [8, 9].
Neighborhood collectives operations [24] in MPI 3/4 have
been used for optimizing the irregular communications in
AMG [12]. CRAMG’s communication optimizations have
wide-ranging potential in distributed memory systems, par-
ticularly for solving large-scale sparse linear systems and
in heterogeneous computing environments where efficient
communication is critical.
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Sparse matrix-vector multiplication (SpMV) is a critical
kernel in multigrid methods. At the algorithmic level, kernel
fusion techniques have been developed to jointly optimize
SpMV with related operations [39, 40, 42], thereby reduc-
ing memory bandwidth usage and access latency while im-
proving overall computational efficiency. For matrices with
symmetry or other specific structural properties, tailored op-
timization strategies have been proposed [1, 26], including
the use of compressed storage formats and matrix reorder-
ing techniques, to further enhance computational perfor-
mance. Moreover, heterogeneous optimization of SpMV has
emerged as a research hotspot [6, 16], focusing on exploiting
the parallel computing capabilities and memory hierarchy
characteristics of hardware accelerators while efficiently dis-
tributing tasks and data across different computational units.
In this work, we optimize SPMV by merging it with other
operators to reduce communication costs, and the previous
optimizations can be combined with our strategy.

The additional costs largely depend on the choice of smooth-
ing operators. Vassilevski and Yang [33] analyzed 𝑙1 Jacobi
and 𝑙1 Gauss-Seidel smoothers, showing that the 𝑙1 Jacobi
smoother requires about twice the memory of the multiplica-
tive method. The 𝑙1 Gauss-Seidel increases the density of
the smoothed interpolation, requiring aggressive truncation
that may degrade convergence rates. Its higher memory de-
mands during setup add further challenges. The latest Hypre
(Version 2.31.0) supports the mult-additive variant with 𝑙1-
Jacobi smoothing, but 𝑙1-Gauss-Seidel smoothing is not yet
implemented.

8 Conclusion
We propose two communication-reducing AMG variants:
CR-D and CR-M. The CR-D method combines the interpo-
lation and the second residual computation, reducing the
number of neighbor communications per level from 4 to
3. CR-M further merges the first residual vectors computa-
tion with restriction operations, and by combining two Halo
communications, it reduces the number of neighbor commu-
nications per level from 4 to 2. Additionally, we implemented
CRAMG based on two smoothing techniques: GS and ILU.
We also combined the generation of the modified smoothed
interpolation operator with the Galerkin product for coarse
grid generation, which improves the efficiency of the AMG
Setup.
Experiments on a 128-node supercomputer with 64-core

Intel Xeon CPUs, using up to 8,192 MPI processes, show CR-
D reduces inter-process data exchange by 41-45%, while CR-
M reduces message count by 31-35% compared to multiplica-
tive AMG. CRAMG achieves up to 1.30x speedup over tradi-
tional methods and up to 1.85x over Hypre’s mult-additive
method. Both CRAMG variants demonstrate excellent weak

and strong scalability in both solve and setup phases. Fur-
thermore, CRAMG proves effective for asymmetric problems,
while Hypre’s multi-additive approach performs poorly. Our
tests on SuiteSparse matrices further confirm CRAMG’s per-
formance advantages on real-world problems, with a max-
imum speedup of 1.16x observed on a single node. These
results comprehensively demonstrate the effectiveness and
efficiency of the CRAMG method across various application
scenarios.
The focus of this work is on distributed-memory CPU

systems. We plan to extend CRAMG to GPU architectures
in future work. Notably, CRAMG’s design (e.g., message re-
duction) is orthogonal to GPU-specific optimizations, and
it could complement existing GPU-accelerated AMG frame-
works.
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