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Abstract
Many program analyses can be formulated as context-free
language (CFL) reachability problems on an edge-labeled
graph. While graph systems have been proposed recently
for large-scale CFL reachability analysis of system software,
the design space has not yet been systematically explored,
leading to sub-optimal performance.

This work presents GraCFL 1, a holistically designed graph
system for CFL reachability. Inspired by the vertex-centric
processing paradigm, we formalize CFL reachability using
a multi-directional vertex-centric model. We then analyze
this model in terms of computation redundancy, strategies
for deriving new reachability, data locality, and parallelism.
The analysis reveals a set of insights that guide the design
of new techniques and optimizations to improve system
performance. As a result of the systematic design, GraCFL
demonstrates superior performance compared to state-of-
the-art graph systems, with an average 14.14× speedup over
Graspan and 8.33× speedup over POCR. Its source code is
available at https://github.com/AutomataLab/GraCFL.

CCS Concepts
• Theory of computation → Grammars and context-
free languages; Graph algorithms analysis.

1GraCFL is pronounced as “graceful”.
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1 Introduction
Context-free language (CFL) reachability is a fundamental
problem in program analysis [9, 54, 81], withmany important
applications, including pointer analysis [49, 61, 66–68, 75, 82],
interprocedural data flow analysis [2, 34, 53, 54, 74], program
slicing [55], type-based flow analysis [46, 50, 51], and shape
analysis [52]. Solving these analyses is essential for various
optimizations, debugging, and security measures [73].

Problem Definition. Consider a context-free language 𝐿

over alphabet Σ, and a graph (𝑉 , 𝐸), where edges are labeled
using symbols from Σ. A vertex 𝑣 is 𝐿-reachable from vertex
𝑠 if there exists a path from 𝑠 to 𝑣 where the concatenation
of edge labels form a string in 𝐿.

Figure 1 illustrates the alias analysis for C programs using
CFL reachability [82], which is employed by LLVM [40, 42] to
support optimizations like loop invariant code motion, dead
code elimination, global value numbering and more [41].
First, an initial edge-labeled graph is generated based on
the input program (black edges in Figure 1a), where edges
encode the “assignment” (𝐴) and “dereference” (𝐷) relations.
Meanwhile, the alias analysis is specified in a context-free
grammar (CFG), as shown in Figure 1b. For example, the
VF rule indicates that an assignment followed by a memory
alias (optional) or any repetition of this pattern is a valid
value flow. Considering the 𝐴-edge from vertex 𝑥 to 𝑦 in the
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Program:

1. y = x;
2. z = &x;
3. *z = y;

x y

z&x

*z

A

D

A
D

A
MA

VF/VA VF/VA

VF/VA

VF/VA

(a) Alias analysis example.

Value flow: 𝑉𝐹 ::= (𝐴 𝑀𝐴?)∗
Memory alias: 𝑀𝐴 ::= 𝐷 𝑉𝐴 𝐷

Value alias: 𝑉𝐴 ::= 𝑉𝐹 𝑀𝐴? 𝑉𝐹

(𝐷 and 𝑉𝐹 indicate edges in reversed direction.)

(b) Context-free grammar

Figure 1: Alias Analysis via CFL Reachability

initial graph, VF rule implies that 𝑦 is VF-reachable from 𝑥 .
Similarly, according to the other two rules, it is possible to
infer theMA-reachability and VA-reachability, which capture
the memory aliases and value aliases, respectively.
For real-world large system software, such as the Linux

kernel and the PostgreSQL database, the initial graph for
interprocedural alias analysis can be large, often containing
millions or even tens of millions of vertices and edges [73].
It is challenging to perform CFL reachability analysis at this
scale due to its resource-demanding nature—it takes at least
subcubic time [6] to find the reachability between every pair
of vertices. Moreover, the analysis generates a large number
of new edges that are dynamically inserted into the graph.

State of The Art. Two recently developed graph systems for
large-scale CFL reachability analysis areGraspan [73, 85] and
POCR [30]. The latter is built on SVF [69]—a popular static
analysis framework. They take as input an initial graph and a
normalized CFG, where the graph encodes immediate facts of
a program, while the CFG captures the analysis logic. Then,
by iteratively examining the graph according to the CFG,
these systems gradually derive new edges that represent
newly discovered reachability and insert them back into
the graph, until no new edges can be identified. Figure 1a
shows the final graph with new edges, denoted as dashed
red arrows, that represent the aliasing relations. For example,
the labeled edges (𝑥, ∗𝑧,VA) and (𝑥, ∗𝑧,MA) indicate that 𝑥
and ∗𝑧 are both value aliases and memory aliases.
While serving the same purpose, the two graph systems

follow completely different designs under the hood. Starting
from the underlying computation model, Graspan initiates
computations per vertex—a vertex-centric approach, while
POCR follows the classic worklist algorithm [45], defining
computations on edges—an edge-centric design. To avoid

Table 1: GraCFL vs. Graspan and POCR

Graspan [73] POCR [30] GraCFL (this work)
Model v-centric (FW) edge-centric v-centric (FW/BW/BI)
Redun. local lists global worklist local temporal vector

Derivation topo-driven grammar-driven topo/grammar-driven
Locality low high
Para. high low tunable by direction

Edges sorted
vectors/arrays

sparse bit vector
+spanning trees vectors+hashsets

repeatedly examining the same edges across iterations, POCR
maintains a global worklist containing only newly derived
edges and processes only cases involving the new edges. In
contrast, Graspan keeps new edges local to each vertex and
merge them into the “old” edge list in each iteration. Finally,
to avoid adding duplicate edges, Graspan sorts edges for fast
de-duplication, while POCR uses sparse bit vectors to keep
edges unique. Table 1 summarizes these design differences,
along with other differences that will be discussed later.

Beyond the above design aspects,Graspan employs a novel
out-of-core processing scheme that partitions the graph and
loads pairs of partitions for processing. In contrast, POCR
operates in memory with unique algorithmic optimizations
by exploiting properties of recursive grammars.

Contributions. As discussed above, the design space for a
graph system supporting CFL reachability is complex. The
primary goal of this work is to systematically explore this
design space, with a focus on the vertex-centric design of an
in-memory graph system for general context-free grammars.
Specifically, it makes the following series of contributions.

• First, it systematically defines the vertex-centric model

for CFL reachability computations and highlights a key
design aspect, model direction, which could be either
forward, backward, or bidirectional.

• Second, it proposes a data structure called temporal

vector, which uses a pair of pointers to separate edges
generated at different times, enabling fast merging of
new edges by simply sliding the pointers.

• Third, it characterizes edge derivation strategies as
topology-driven and grammar-driven approaches, and
selects the appropriate one based on the inputs.

• Fourth, it identifies a key data locality optimization
for the bidirectional model and uncovers discrepancies
in both locality and parallelism across different model
directions, highlighting the need of direction selection.

• Finally, it proposes to maintain the growing graph
using both vectors and hashsets, enabling efficient
edge list traversal and fast edge existence checks, at
the cost of increased memory usage.
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Based on the above exploration, we developed GraCFL, a
versatile graph system that offers customizable execution
models that can be configured according to users’ specific
constraints, such as the available CPU cores and memory
capacities. We compared GraCFL with Graspan-C [85] and
POCR [30], two state-of-the-art graph systems for solving
CFL reachability analysis, using two points-to analyses and
one data-flow analysis on a suite of system software, which
include Linux, PostgreSQL, Apache httpd, Hadoop HDFS,
and MapReduce. GraCFL exhibits significant speedups over
the existing systems, achieving on average 14.14× and 8.33×
speedups over Graspan-C and POCR, respectively.

2 Background
This section formally defines the CFL reachability problem
and presents the basic workflow for solving it.

2.1 Problem Formalization
Consider an edge-labeled graph 𝐺 (𝑉 , 𝐸, Σ), where the edge
labels are symbols from the alphabet Σ, and the set of edges
is denoted as 𝐸 = {(𝑣𝑖 , 𝑣 𝑗 , 𝑎) |𝑎 ∈ Σ and 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 }. A path
𝜋 on the graph is a sequence of consecutive edges: 𝜋 =

{(𝑣1, 𝑣2, 𝑎1), (𝑣2, 𝑣3, 𝑎2), . . . , (𝑣𝑘−1, 𝑣𝑘 , 𝑎𝑘−1)}where𝑘−1 is the
length of the path. A path string 𝑙 (𝜋) is defined as a serial
concatenation of the edge labels over the path 𝜋 :

𝑙 (𝜋) = (𝑎1, 𝑎2, . . . , 𝑎𝑘−1) (1)

Consider a context-free grammar G (V , Σ, 𝑅, 𝑆), whereV
and Σ are two disjoint sets, for non-terminals and terminals,
respectively, 𝑅 is the set of production rules, and 𝑆 denotes
the start symbol (a non-terminal). A production rule maps a
non-terminal to a string with symbols fromV ∪ Σ, that is,
𝑅 = {𝐴 ::= 𝛼 |𝐴 ∈ V and 𝛼 is a string in (V ∪ Σ)∗} where
asterisk ∗ denotes the Kleene star operation. The context-free
language defined by grammar G is denoted as 𝐿(G).

Definition 2.1. Given a context-free grammar G(V , Σ, 𝑅,
𝑆) and a graph𝐺 (𝑉 , 𝐸, Σ), where the labels in the graph share
the same symbols as the terminal set of the grammar—Σ. If
there exists at least one path 𝜋 from vertex 𝑠 to vertex 𝑡

(𝑠, 𝑡 ∈ 𝑉 ) such that the corresponding path string 𝑙 (𝜋) can
be derived from non-terminal 𝐴 according to grammar G,
then 𝑡 is 𝐴-reachable from 𝑠 . If 𝐴 is the start non-terminal,
we say 𝑡 is 𝑆-reachable or 𝐿-reachable from 𝑠 , where 𝐿 is the
language defined by grammar G.

2.2 Graph Systems for CFL Reachability
The existing graph systems, like Graspan [73] and POCR [30],
follow a similar high-level processing workflow. They take as
input an initial graph𝐺 (𝑉 , 𝐸) and a context-free grammar G,
and output a new graph𝐺 ′ (𝑉 ′, 𝐸′) where𝑉 ′ = 𝑉 and 𝐸′ ⊇ 𝐸.

The new edges in 𝐺 ′ (i.e., 𝐸′ \ 𝐸) capture the 𝐴-reachability,
where 𝐴 is a non-terminal (i.e., 𝐴 ∈ V).

CFGNormalization. To simplify system design, these graph
systems assume a normal grammar 2, where the right-hand
side (RHS) of each production rule has at most two symbols.
For example, rule 𝐴 ::= 𝐴𝑏𝐵 could be normalized to

𝐴 ::= 𝐴𝐴′ and 𝐴′ ::= 𝑏𝐵.
This conversion takes linear time, and the grammar size also
increases linearly. After the normalization, each production
must be in one of the following three forms

𝐴 ::= 𝑋𝑌 (2)
𝐴 ::= 𝑋 (3)
𝐴 ::= 𝜖 (4)

New Edge Derivation. The graph systems derive new edges
according to the normalized grammar. Thanks to the normal-
ization, the systems only need to check at most two adjacent
edges each time. Consider the following two edges.

i j k
X Y

The systems need to cover the following three cases.
• Check if string 𝑋𝑌 matches the RHS of any grammar
rule. For example, if there exists a rule like 𝐴 ::= 𝑋𝑌 ,
then an edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) is generated;

i j k
X Y

A

• Check if individual symbols 𝑋 and 𝑌 match the RHS
of any grammar rule. For example, if there exists a rule
like 𝐵 ::= 𝑋 , then an edge (𝑣𝑖 , 𝑣 𝑗 , 𝐵) is generated;

i j k
X Y
B

• Check if there exists rules like𝐶 ::= 𝜖 , if so, generate a
self-loop edge for each vertex. In this case, three edges
(𝑣𝑖 , 𝑣𝑖 ,𝐶), (𝑣 𝑗 , 𝑣 𝑗 ,𝐶), and (𝑣𝑘 , 𝑣𝑘 ,𝐶) are generated.

i j k
X Y

C C C

Note that the last case depends only on vertices, thus
can be preprocessed. In the following, we will focus our
discussion on the first two cases.

Fixed-Point Iterative Algorithm. Since the newly generated
edges can be used to generate more edges, these systems
must iteratively derive and add new edges until no more
can be generated—reaching a fixed point. To achieve this,
Graspan examines all the vertices in each iteration until no
2This normal form is similar to Chomsky Normal Form, but it allows 𝜖-rules
and doesn’t limit where terminal symbols can appear.
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Algorithm 1 Vertex-Centric Model
1: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE /* a global flag for termination */
2: while 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 do /* fixed-point iterations */
3: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = FALSE
4: for vertex 𝑣𝑖 ∈ 𝑉 do
5: 𝑓 (𝑣𝑖 ) /* vertex function may set 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE */

vertices consist of new edges. In comparison, POCR keeps
a worklist of new edges alongside the graph, continuously
appending new edges to the worklist and removing edges
after being processed, until the worklist becomes empty.
The worst-case time complexity for solving the general CFL
reachability problem has been proven to be subcubic [6] to
the number of vertices and the size of the alphabet.

Graph Representation. To represent the growing graph,
systems need to use dynamic data structures, like adjacency
lists. Graspan uses vectors to store edge lists, while POCR
uses hashsets along with spanning trees. As we will discuss
later, each choice has its own advantages and disadvantages
in the context of CFL reachability analysis.

In addition, both Graspan and POCR provide some unique
features. Graspan supports scenarios with limited memory
budgets using out-of-core processing. This is achieved with
an adaptive partitioning-scheduling scheme. A key feature of
POCR is its redundancy elimination for recursive grammars,
which leverages edge derivation order to avoid the repetitive
derivation of identical edges. In contrast, this work targets
system-level design and optimizations of an in-memory graph
system for general context-free grammars.

3 Computation Model
Vertex-centric model [43, 44] is an established paradigm
for solving many classic iterative graph problems, such as
breadth-first search (BFS), shortest path, and PageRank [4].
As described in Algorithm 1, under this model, computations
are defined from the perspective of a vertex, expressed by a
function called the vertex function 𝑓 (𝑣).
Taking single-source shortest path (SSSP) problem as an

example, the vertex function uses 𝑣 ’s latest shortest distance
(from the source) to update the shortest distance of each of
𝑣 ’s out-neighbors (from the source), that is,

𝑑𝑖𝑠𝑡𝑛 = min{𝑑𝑖𝑠𝑡𝑛, 𝑑𝑖𝑠𝑡𝑣 +𝑤𝑒𝑖𝑔ℎ𝑡 (𝑣, 𝑛)} (5)

for each 𝑛 ∈ 𝑜𝑢𝑡𝑛𝑏𝑟𝑠 (𝑣). By applying this function to all
vertices (or a subset of vertices) in the graph iteration by
iteration, the shortest distances from the source to all the
other vertices in the graph can be obtained.

Vertex-Centric CFL Reachability. Despite the significant
differences in the computations (min/max vs. CFGmatching),
we find that the CFL reachability problem naturally suits

Algorithm 2 Forward Vertex Function
1: function 𝑓𝐹𝑊 (𝑣𝑖 )
2: for edge (𝑣𝑖 , 𝑣 𝑗 , 𝐵) in OE(𝑣𝑖 ) do
3: for production 𝐴 ::= 𝐵 ∈ G do
4: if edge (𝑣𝑖 , 𝑣 𝑗 , 𝐴) ∉ OE(𝑣𝑖 ) then
5: add (𝑣𝑖 , 𝑣 𝑗 , 𝐴) into OE(𝑣𝑖 )
6: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE
7: for edge (𝑣 𝑗 , 𝑣𝑘 ,𝐶) of OE(𝑣 𝑗 ) do
8: for production 𝐴 ::= 𝐵𝐶 ∈ G do
9: if edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) ∉ OE(𝑣𝑖 ) then
10: add (𝑣𝑖 , 𝑣𝑘 , 𝐴) into OE(𝑣𝑖 )
11: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE

the vertex-centric model. An intuitive way to define the
vertex function, which was first introduced by Graspan [73],
is illustrated in Figure 2a. Given a vertex 𝑣𝑖 , the function
scans its out-edges 𝑂𝐸 (𝑣𝑖 ), and for each out-edge (𝑣𝑖 , 𝑣 𝑗 ,𝐶),
it further traverses 𝑣 𝑗 ’s out-edges 𝑂𝐸 (𝑣 𝑗 ). By concatenating
the labels on two adjacent edges and checking them against
the grammar, it determines if a new edge is derived for vertex
𝑣𝑖 . Algorithm 2 outlines the above processing logic.

…

…B
C

(a) Forward

…

…

B

C

(b) Backward (c) Bidirectional

i i

… …i

B C

AA A

j

k

j

k
j k

Figure 2: Directions of Vertex-Centric Model

Directions. In fact, Algorithm 2 only shows one possible
vertex function, which we call the forward vertex function.
Instead of scanning the one-hop and two-hop out-neighbors,
the vertex function could traverse its one-hop and two-hop
in-neighbors (see Figure 2b), referred to as the backward

vertex function. This distinction in traversal direction mirrors
the push/pull model [3, 15, 77] in general-purpose graph
systems, which has been proven to be crucial to performance.

In fact, there is the third way to define the vertex function:
traverse the vertex’s direct in-neighbors and out-neighbors,
concatenate their labels on each combination of two adjacent
edges, as depicted by Figure 2c, and detailed by Algorithm 3.
We refer to this approach as the bidirectional vertex function,
which resembles the gather-apply-scatter (GAS) model [13]
used in some general-purpose graph systems.
Table 2 compares the vertex-centric model for classic

graph problems (like BFS and shortest paths) and that for
CFL reachability.

3The graph is fixed during query evaluation to ensure result integrity.
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Algorithm 3 Bidirectional Vertex Function
1: function 𝑓𝐵𝐼 (𝑣𝑖 )
2: for edge (𝑣 𝑗 , 𝑣𝑖 , 𝐵) in IE(𝑣𝑖 ) do
3: for production 𝐴 ::= 𝐵 ∈ G do
4: if edge (𝑣𝑖 , 𝑣 𝑗 , 𝐴) ∉ IE(𝑣𝑖 ) then
5: add (𝑣𝑖 , 𝑣 𝑗 , 𝐴) into IE(𝑣𝑖 )
6: add (𝑣𝑖 , 𝑣 𝑗 , 𝐴) into OE(𝑣 𝑗 )
7: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE
8: for edge (𝑣𝑖 , 𝑣𝑘 ,𝐶) in OE(𝑣𝑖 ) do
9: for production 𝐴 ::= 𝐵𝐶 ∈ G do
10: if edge (𝑣 𝑗 , 𝑣𝑘 , 𝐴) ∉ IE(𝑣𝑘 ) then
11: add (𝑣 𝑗 , 𝑣𝑘 , 𝐴) into IE(𝑣𝑘 )
12: add (𝑣 𝑗 , 𝑣𝑘 , 𝐴) into OE(𝑣 𝑗 )
13: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE

Table 2: Comparison of Vertex-Centric Models

Classic Graph Problems CFL Reachability
Edge Set static (fixed)3 dynamic (growing)
Traversal one-hop neighbors 1-2 hops of neighbors
Comp. min/max CFG matching

Direction push/pull/GAS FW/BW/BI

Graph Representations. The forward and backward models
require an out-neighbor adjacency list and an in-neighbor
adjacency list, respectively. In comparison, the bidirectional
model needs both the out- and in-neighbor adjacency lists,
which doubles the memory cost. It is worth noting that the
classic worklist-based algorithm for CFL reachability [45]
also requires both out- and in-neighbor adjacency lists.
In addition, it is important to note that when new edges

are inserted, the forward and backward models add them
to the vertex being processed—𝑣𝑖 , while bidirectional model
inserts each new edge twice—one into the out-neighbor list
of 𝑣𝑖 ’s in-neighbor, and the other into the in-neighbor list of
𝑣𝑖 ’s out-neighbor (see Algorithm 3).

4 Redundancy Elimination
Eliminating redundant computations has been a primary
focus of prior graph systems [30, 63, 73]. In this section, we
examine the redundancies in vertex-centric models—repeated
edge checks and present a key finding—the existing approach
for avoiding repeated edge checks is costly due to frequent
vector copy operations. To avoid vector copies, we propose
an alternative solution called sliding pointers.

Redundancy. Under a naive design, a graph system may
unnecessarily re-examine the same edge or edge pairs across
different iterations. As demonstrated in Figure 3, in the 𝐼 -th
iteration, the system checks edge pair 𝐵𝐶 and subsequently
creates a new edge (𝑣𝑖 , 𝑣𝑙 , 𝐴). In the next iteration, if the
system checks the same edge pair 𝐵𝐶 again, it would be

(a) Iteration I (b) Iteration I+1

B C
A

i lk D j B C
A

i lk D j

S

old old

new
future

old

Figure 3: Demonstration of Redundant Checking

Algorithm 4 𝑓FW () with Redundancy Elimination
1: function 𝑓FW(𝑣𝑖 )
2: for edge (𝑣𝑖 , 𝑣 𝑗 , 𝐵) in newOE(𝑣𝑖 ) do
3: for production 𝐴 ::= 𝐵 ∈ G do
4: if edge (𝑣𝑖 , 𝑣 𝑗 , 𝐴) ∉ OE(𝑣𝑖 ) then
5: add edge (𝑣𝑖 , 𝑣 𝑗 , 𝐴) to futureOE(𝑣𝑖 )
6: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE
7: for edge (𝑣 𝑗 , 𝑣𝑘 ,𝐶) in oldOE(𝑣 𝑗 ) ∪ newOE(𝑣 𝑗 ) do
8: if production 𝐴 ::= 𝐵𝐶 ∈ G then
9: if edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) ∉ OE(𝑣𝑖 ) then
10: add edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) to futureOE(𝑣𝑖 )
11: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE
12: for edge (𝑣𝑖 , 𝑣 𝑗 , 𝐵) in oldOE(𝑣𝑖 ) do

13: for edge (𝑣 𝑗 , 𝑣𝑘 ,𝐶) in newOE(𝑣 𝑗 ) do
14: if production 𝐴 ::= 𝐵𝐶 ∈ G then
15: if edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) ∉ OE(𝑣𝑖 ) then
16: add edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) to futureOE(𝑣𝑖 )
17: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE

a redundant check. Instead, the system should check edge
pair 𝐴𝐷 because edge (𝑣𝑖 , 𝑣𝑙 , 𝐴) was just created in the prior
iteration and hasn’t been examined up to this point.

Based on the above observation, the graph system should
only check edges newly generated in the prior iteration and
edge pairs with at least one of those newly generated edges.
To distinguish such cases from the rest, Graspan categorizes
edges into three groups [73]:

• 𝐸old: old edges generated before the prior iteration;
• 𝐸new: new edges generated in the prior iteration;
• 𝐸future: future edges generated in the current iteration.

Then, the system only needs to examine “new” edges and
edge pairs in “old-new”, “new-old”, and “new-new” patterns,
as illustrated in Algorithm 4. For the first iteration, all initial
edges are marked “new". At the end of each iteration, the
graph system updates the edge groups (see Algorithm 5).

Intuitive Implementation. To adopt the “old-new-future”
optimization, it is intuitive to maintain three edge vectors
for each vertex, one for each type of edges, as illustrated
in Figure 4a. In-between two iterations, move new edges
from 𝐸new to 𝐸old and turn the future edge list 𝐸future into the
new edge list 𝐸new. However, the cost of moving edges is not
cheap. Essentially, it loops over all the elements in the source
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Algorithm 5 Vertex-Centric Model with Redun. Elim.
1: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE /* a global flag for termination */
2: while 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 do /* fixed-point iterations */
3: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = FALSE
4: for vertex 𝑣𝑖 in 𝑉 do
5: 𝑓 (𝑣𝑖 ) /* vertex function */
6: updateOldNewFuture() /* add newOE(𝑣𝑖 ) into oldOE(𝑣𝑖 ),

move futureOE(𝑣𝑖 ) to newOE(𝑣𝑖 ), and empty futureOE(𝑣𝑖 ) */

Eold

newold future

Enew
Efuture

pold pnew pfuture

E12

1 2

(a) vector copying (b) sliding pointers

Figure 4: Vector Copying vs. Sliding Pointers

list and move each of them to the destination list. Moreover,
the edge movements occur per vertex and per iteration.

Sliding Pointers. To address the issue, we propose a new
implementation based on the following observation:

Observation: Each generated edge follows a strict

chronological "lifecycle": it begins as a "future" edge, then

transitions to a "new" edge, and ultimately stays as an

"old" edge. No edges are deleted during this process.

This observation implies the possibility of using a single
vector to store all the edges of a vertex in the order they
are created. To track their status, we can use two pointers,
𝑝new and 𝑝future, to split the vector into three time zones, as
illustrated in Figure 4b. To update their statuses, we simply
“slide” the new-edge and future-edge pointers towards the
future end. We refer to this data structure as the temporal

vector and the corresponding technique as sliding pointers.

5 Edge Derivation Strategies
Topology-driven Edge Derivation. So far, our discussion has

followed an intuitive process for deriving edges, as illustrated
in Figure 5: first, locate existing edge(s) and their label(s)
(e.g., 𝐵𝐶); then, search for matching grammar rules. For each
matched rule (e.g., 𝐴 ::= 𝐵𝐶), generate a corresponding new
edge (an𝐴-edge). We refer to this strategy as topology-driven
edge derivation , which was employed in Graspan [73].
However, there is a caveat in the above strategy—when

the graph consists of a diverse set of edge symbols, that is,
the size of alphabet Σ is relatively large, it is likely many edge
pairs may fail to match any grammar rules. In such cases,
no new edge would be generated—these edge pair checks
become “wasted”. To address this type of inefficiency, we
next discuss an alternative strategy for edge derivation.

Bi kCj

(a) Topology-driven Edge Derivation

A ::= BC

(b) Grammar-driven Edge Derivation

A ::= BC

Bi kCj

A

Bi kCjBi j

A

k
Cj

Figure 5: Edge Derivation Strategies

Grammar-driven Edge Derivation. In this design, the graph
system leverages grammar rules to guide the derivation of
new edges, rather than relying solely on the graph structure.
Figure 5b illustrates this alternative strategy. It starts from a
single edge (𝑣𝑖 , 𝑣 𝑗 , 𝐵), then searches for grammar rules like
𝐴 ::= 𝐵𝐶 , where 𝐶 dictates the label of the second edge. In
this way, it only needs to locate the out-edges of 𝑣 𝑗 with label
𝐶 rather than scanning all its out-edges. For each matched
out-edge of (𝑣 𝑗 , 𝑣𝑘 ,𝐶), it generates a new edge (𝑣𝑖 , 𝑣𝑘 , 𝐴).
Algorithm 6 implements this in the forward model. Note
that to quickly locate edges of a particular label, it would be
better to index the edges by labels (see Section 7.2), which
may further scatter the edges in the adjacency list, potentially
worsening the locality.

This grammar-driven strategy was first introduced in the
worklist-based solver for CFL reachability [45]. We adopted
it to the vertex-centric model. In practice, we found that the
grammar-driven strategy fail to outperform the topology-
driven strategy for simple grammars (see Section 7), likely
due to the limited benefits and the use of label-indexed graph.
Therefore, the edge derivation strategy should be selected
based on the grammar complexity.

6 Locality, Parallelism, and Trade-offs
Data locality and parallelism are two other critical aspects of
graph systems that significantly impact performance. This
section examines them within the proposed vertex-centric
models, assuming the optimizations discussed in Section 4.

6.1 Data Locality
After measuring the performance of the vertex-centric model
under different directions (see data in Section 8), we make
two interesting observations regarding its data locality.

First, we find that there exists a discrepancy between the
forward and backward models in terms of data locality.

Forward vs. Backward: Despite the symmetry between

the forward and backward vertex-centric models, their

data locality can vary substantially.
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Algorithm 6 𝑓FW with Grammar-driven Edge Derivation
1: function 𝑓FW(𝑣𝑖 )
2: for edge (𝑣𝑖 , 𝑣 𝑗 , 𝐵) in newOE(𝑣𝑖 ) do
3: for production 𝐴 ::= 𝐵 ∈ G do
4: if edge (𝑣𝑖 , 𝑣 𝑗 , 𝐴) ∉ OE(𝑣𝑖 ) then
5: add edge (𝑣𝑖 , 𝑣 𝑗 , 𝐴) to futureOE(𝑣𝑖 )
6: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE
7: for production 𝐴 ::= 𝐵𝐶 ∈ G do

8: for edge (𝑣 𝑗 , 𝑣𝑘 ,𝐶) in oldOE(𝑣 𝑗 ) ∪ newOE(𝑣 𝑗 ) do
9: if edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) ∉ OE(𝑣𝑖 ) then
10: add edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) to futureOE(𝑣𝑖 )
11: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE
12: for edge (𝑣𝑖 , 𝑣 𝑗 , 𝐵) in oldOE(𝑣𝑖 ) do
13: for production 𝐴 ::= 𝐵𝐶 ∈ G do

14: for edge (𝑣 𝑗 , 𝑣𝑘 ,𝐶) in newOE(𝑣 𝑗 ) do
15: if edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) ∉ OE(𝑣𝑖 ) then
16: add edge (𝑣𝑖 , 𝑣𝑘 , 𝐴) to futureOE(𝑣𝑖 )
17: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE
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Figure 6: In-degree vs. Out-degree Distributions (the
final data-flow graph from benchmark PostgreSQL)

This discrepancy can be attributed to the fact that although
the total in-degrees and out-degrees of a graph are always
identical, the distribution of in-degrees and out-degrees can
differ significantly. In the example reported in Figure 6, the
out-degree exhibits a more skewed distribution with more
vertices with high (out)-degrees. In this case, the forward
model may benefit from the improved spatial locality when
accessing adjacency lists and thus tends to perform better.

However, it is difficult to leverage the above insight as the
degree distribution of the final graph is unknown a priori.
Luckily, we find that asymmetric degree distributions are
linked to the left and right recursion of grammar rules: left
recursion in the grammar results in increased out-degrees
of vertices, while right recursion increases the in-degrees of
vertices. Based on this rationale, the graph system can check
the existence of left and right recursion in the grammar rules,
and select the model direction accordingly.
Our second key observation is about the traversal order

of “old” and “new” edge lists. Recall that with redundancy

elimination, the system needs to examine three combinations
of edge pairs: “old-new”, “new-old”, and “new-new”.

“old-new” vs. “new-old”: Despite the symmetry between

“old-new” and “new-old” traversal orders of edge pairs,

their data locality can vary substantially.

This discrepancy can be attributed to the fact the “old”
edge list keeps accumulating as “new” edges turn into “old”
ones over iterations, causing the “old" edge list significant
larger than the “new" edge list for most of the time. In fact,
we observe better performance if the processing traverses
the (shorter) “new” edge list in the outer iteration and the
(longer) “old” edge list in the inner iteration, likely due to
the improved spatial locality in accessing the “old” edge list.
Now consider the model direction. For the forward and

backward models, we find that the “new-old” traversal order
can only be achieved partially. Taking the forward model as
an example, as shown in Algorithm 6, the first major for-loop
(Line 2) follows the “new-old” pattern, but the second major
for-loop (Line 12) does not. Unfortunately, we cannot change
their order without affecting the correctness.
In contrast, we find that the “new-old” optimization is

fully applicable to the bidirectional model, as demonstrated
in Algorithm 7. In this model, both the first and second major
loop nests traverse the "new" edge list in the outer layer and
the "old" edge list in the inner layer. This is feasible because,
in the bidirectional model, the vertex being processed is
positioned between a pair of adjacent edges, unlike in the
forward or backward models, where the vertex is situated at
one end of two adjacent edges (see Figure 2).

6.2 Parallelism
The complexity of parallel CFL reachability analysis arises
from the dynamic nature of the graph. Parallel models must
ensure the correctness of results while threads concurrently
read from and update the graph. An intuitive parallelization
of the vertex-centric models is to execute the vertex function
on different vertices in parallel. However, our analysis reveals
that this approach may not be safe for all model directions.

Vertex-Level Parallelism: The forward and backward

models can safely run in parallel at the vertex level,

whereas the bidirectional model introduces data races.

In both forward and backward vertex-centric models, new
edges are always added to the edge list of the vertex being
processed 𝑣𝑖 (see Figure 2a and 2b). This ensures that threads
onlymodify the edge lists of their assigned vertices. However,
in the bidirectional model, new edges are inserted into the
edge lists of 𝑣𝑖 ’s in/out-neighbors (see Figure 2c). This creates
the possibility of multiple threads inserting edges into the
same vertex’s adjacency list, leading to data races. To avoid
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Algorithm 7 𝑓BI with “new-old” Optimization
1: function 𝑓BI(𝑣𝑖 )
2: for edge (𝑣 𝑗 , 𝑣𝑖 , 𝐵) in newIE(𝑣𝑖 ) do
3: for production 𝐴 ::= 𝐵 ∈ G do
4: if edge (𝑣 𝑗 , 𝑣𝑖 , 𝐴) ∉ OE(𝑣 𝑗 ) then
5: add edge (𝑣 𝑗 , 𝑣𝑖 , 𝐴) to futureOE(𝑣 𝑗 )
6: add edge (𝑣 𝑗 , 𝑣𝑖 , 𝐴) to futureIE(𝑣𝑖 )
7: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE
8: for production 𝐴 ::= 𝐵𝐶 ∈ G do
9: for edge (𝑣𝑖 , 𝑣𝑘 ,𝐶) in oldOE(𝑣 𝑗 ) ∪ newOE(𝑣 𝑗 ) do
10: if edge (𝑣 𝑗 , 𝑣𝑘 , 𝐴) ∉ OE(𝑣 𝑗 ) then
11: add edge (𝑣 𝑗 , 𝑣𝑘 , 𝐴) to futureOE(𝑣 𝑗 )
12: add edge (𝑣 𝑗 , 𝑣𝑘 , 𝐴) to futureIE(𝑣𝑘 )
13: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE
14: for edge (𝑣𝑖 , 𝑣𝑘 , 𝐵) in newOE(𝑣𝑖 ) do
15: for production 𝐴 ::= 𝐶𝐵 ∈ G do
16: for each edge (𝑣 𝑗 , 𝑣𝑖 ,𝐶) in oldIE(𝑣𝑖 ) do
17: if edge (𝑣 𝑗 , 𝑣𝑘 , 𝐴) ∉ OE(𝑣 𝑗 ) then
18: add edge (𝑣 𝑗 , 𝑣𝑘 , 𝐴) to futureOE(𝑣 𝑗 )
19: add edge (𝑣 𝑗 , 𝑣𝑘 , 𝐴) to futureIE(𝑣𝑘 )
20: 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 = TRUE

Table 3: Trade-off between Locality and Parallelism

Models Locality Parallelism

V-centric
(FW/BW)

“old-new” loop
out- or in-neighbor list

vertex-parallel

V-centric
(BI)

“new-old” loops
out- and in-neighbor list

sync-required

data races, one may employ concurrent data structures, such
as concurrent queues, which, however, comes with both time
and memory overhead (see Section 8).
Similar data races occur in the worklist-based algorithm

used in POCR, while Graspan avoids these races by adopting
a model that is similar to our forward model.

6.3 Trade-offs
Based on the above discussions, we find no single direction
outperforms the others in both parallism and data locality,
as summarized in Table 3. The unidirectional models require
only a single graph copy, whereas the bidirectional model
needs both in- and out-neighbor adjacency lists, resulting in
higher memory pressure. However, the bidirectional model
supports the full “new-old” locality optimization, while the
forward and backward models do not. In terms of parallelism,
the unidirectional models are clearly superior. In Section 8,
we will report the performance of these model variants.

7 Implementation
We implemented the above design ideas into a graph system
for in-memory CFL reachability analysis, called GraCFL.

7.1 System Configuration
GraCFL is a customizable graph system that allows users to
select the model configuration based on their specific needs
and data characteristics. It supports the vertex-centric model
in all three directions. For each model direction, it offers both
serial and parallel execution (see Section 7.3). Furthermore,
GraCFL allows users to choose between topology-driven
and grammar-driven edge derivation, based on grammar’s
complexity. After discussing the performance in Section 8,
we will offer some guidelines for model selection.

7.2 Data Structures
GraCFL employs a group of data structures customized to
the proposed models and optimizations, as listed below.

Adjacency Lists. To represent the growing graph, GraCFL
needs in-neighbor or/and out-neighbor adjacency lists.
For topology-driven models, it is often sufficient to use a

2D vector like vector<vector<Edge>>, where the outer level
is indexed by the vertex IDs and the inner level is a vector
of Edge that consists of a label and a neighbor’s ID.
For grammar-driven models, GraCFL needs to access the

edges of a vertex with a specific label (see Algorithm 6). To
avoid scanning the neighbors, GraCFL uses a 3D vector:

vector<vector<vector<ull>>> edges

where the outer two levels are indexed by vertex ID and label
ID, and the innermost level stores the IDs of neighbors. This
data structure returns a list of neighbors associated with a
given vertex ID and label in constant time.

Rule Lookup Tables. Topology-drivenmodels need to check
if a pair of labels matches any rule’s RHS symbols, like 𝐴 ::=
𝐵𝐶 ∈ G for edge pair 𝐵𝐶 , while grammar-driven models
need to obtain all the rules (like 𝐴 ::= 𝐵𝐶) whose first (or
second) RHS symbol matches the given symbol (e.g., 𝐵).
To avoid scanning the rules, Graspan uses a hashmap to

find the LHS symbol based on the RHS symbol(s). However,
the evaluation of the hash function can limit performance.
Instead, we store the rules in tables, based on the assumption
that grammars typically have a limited number of rules.
Consider rules 𝐴 ::= 𝐵𝐶 and 𝐷 ::= 𝐸, GraCFL generates

the following lookup tables:
• table LHS1Table[𝐸] returns 𝐷 ;
• table LHS2Table[getValue(𝐵𝐶)] returns 𝐴;
• table RHS1Table[𝐵] returns (𝐴,𝐶);
• table RHS2Table[𝐶] returns (𝐴, 𝐵).

When multiple rules match, these tables return a list. Each
lookup takes (nearly) constant time.
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Table 4: Graph Statistics of Benchmarks

Benchmarks #Vertices #Init. Edges #New Edges
Self Other

DF
httpd 5.7M 10.0M - 9.3M

postgres 29.8M 34.8M - 21.3M
linux 42.4M 44.0M - 55.2M

PT
httpd 1.7M 3.0M 5.0M 896.2M

postgres 5.2M 9.4M 15.6M 837.2M
linux 11.3M 19.0M 33.8M 133.8M

JPT mapreduce 21.9M 41.9M - 57.3M
hdfs 5.3M 10.2M - 1.8B

Local Edge Hashset. For termination and efficiency, the
graph system should prevent edge duplication—checking the
existence of an edge before inserting it, like (𝑣𝑖 , 𝑣𝑘 , 𝐴) ∉ 𝐸.

First, storing the (sparse) graph in an adjacency matrix is
impractical due to the sheer amount of vertices in real graphs.
Instead, Graspan keeps edges sorted and removes duplicates
in-between iterations [73]—a process that is computationally
demanding. In contrast, POCR [30] utilizes a sparse bit vector
to store edges of a vertex under a particular label, inherently
preventing duplicates, but incurring additional overhead for
edge membership checks and edge list traversal.

Unlike existing designs, GraCFL keeps a local hashset for
each vertex and each label to check edge membership, which
together form a 3D data structure:

vector<vector<unordered_set<ull>>> edges

where the first two vectors are for the source vertex and edge
label, while the unordered_set stores destination vertices.
Together, the adjacency list and local edge hashset form

a “dual graph” representation, which makes both edge list
traversals and edge membership checks efficient, albeit at
the cost of a larger memory footprint.

In addition, all major memory allocation inGraCFL is done
via jemalloc, which is a general-purpose implementation
of malloc(3) that emphasizes scalable concurrency support.

7.3 Parallelization
GraCFL uses the OpenMP library for parallel forward and
backward models. For the bidirectional model, it employs a
couple of concurrent data structures from the TBB library:

• concurrent_vector [17] for the adjacency lists
• concurrent_unordered_set [16] for the local hashset

As our evaluation will show, the use of these containers leads
to increased memory consumption, thus their deployment
should be approached with caution.

8 Evaluation
This section aims to answer two main research questions.

• RQ1: How well does GraCFL perform compared to
state-of-the-art graph systems for CFL reachability?

• RQ2: How do previously discussed design choices and
optimizations quantitatively impact performance?

8.1 Methodology
Experiment Setup. All of our experiments were conducted

on a 16-core 2.10GHz Intel(R) Xeon(R) CPU E5-2683 v4 with
32 hyper-threads and 256GB memory. The machine runs
Rocky Linux release 8.8 (Green Obsidian). All programs we
evaluated, including the baselines, were compiled with the
-O3 optimization flag, and their parallel versions were run
using 32 threads unless otherwise noted.

Benchmarks. To evaluate the performance of GraCFL, we
utilized graphs and grammars from the Graspan project [73],
which include two points-to analysis grammars, one for
C/C++ programswith 12 rules and one for Java programs [82]
with 21 rules, as well as a single-rule data-flow analysis for
C/C++ programs. The graphs are generated from codebases
of Linux 4.4.0-rc5, PostgreSQL 8.3.9, Apache httpd 2.2.18, as
well as Hadoop HDFS 2.0.3 and MapReduce 2.7.5. Table 4
lists the statistics of the initial and final graphs.

8.2 Overall Performance
We compared GraCFL with state-of-the-art (SOTA) systems
for CFL reachability, including Graspan [73] and POCR [30].
For simplicity, we use FW, BW, BI to refer to the forward,
backward, and bidirectional models in GraCFL, respectively.

Baseline Setups. Note that Graspan is designed for out-of-
core processing scenarios. Here, we configured it so that the
entire graph remains residing in memory during the whole
processing. Graspan provides multiple implementations in
different languages 4. We chose Graspan-C, the fastest one
among these implementations. As to POCR

5, to ensure it
operates under its optimal performance conditions, we fed
it with both Graspan- and POCR-style grammars when it is
possible and chose the results with better performance. In
addition,Graspan is configured to use all 32 CPU cores, while
POCR ran on a single core for its single-threaded design.

Results Summary. Table 5 reports the execution times of
two representative configurations of GraCFL: a FW model
with 32 threads and a serial BI model, and the three SOTA
systems following the above settings. In general, the parallel
FW model of GraCFL performs the best across all tested
benchmarks, achieving 2.44×-318.10× speedup overGraspan-
C and 1.41×-57.60× speedup over POCR. In addition, the
serial BI model of GraCFL outperforms SOTA systems for

4https://github.com/Graspan
5https://github.com/kisslune/POCR

https://github.com/Graspan
https://github.com/kisslune/POCR
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Table 5: Comparison with State-of-the-art (SOTA) Systems

Benchmarks GraCFL SOTA Systems Speedups
Graspan-C POCR FW over

Graspan-C
BI over

Graspan-C
FW over
POCR

BI over
POCR(FW, 32t) (BI, 1t) (32t) (1t)

DF
httpd 8s 18s 34s 32s 4.25x 1.89x 4.00x 1.78x

postgres 93s 268s 471s 131s 5.06x 1.76x 1.41x 0.49x
linux 127s 425s 735s 209s 5.79x 1.73x 1.65x 0.49x

PT
httpd 90s 198s 4007s 2742s 44.52x 20.24x 30.47x 13.85x

postgres 104s 254s 3607s 1740s 34.68x 14.20x 16.73x 6.85x
linux 43s 190s 105s 319s 2.44x 0.55x 7.42x 1.68x

JPT mapreduce 17s 96s 182s 194s 10.71x 1.90x 11.41x 2.02x
hdfs 82s 248s 26084s 4723s 318.10x 105.18x 57.60x 19.04x

Table 6: Redundancy Elimination (GraCFL-BI)

Benchmarks Vector Copying Sliding Pointers
Com Upd Total Com Upd Total

DF
httpd 24s 24s 48s 11s 7s 18s

postgres 377s 467s 844s 116s 152s 268s
linux 593s 721s 1314s 190s 235s 425s

PT
httpd 262s 177s 439s 179s 19s 198s

postgres 485s 543s 1028s 196s 58s 254s
linux 628s 962s 1590s 101s 89s 190s

JPT mapreduce 345s 564s 909s 50s 46s 96s
hdfs 319s 123s 442s 239s 9s 248s

most tested cases, faster than the 32-thread Graspan-C and
serial POCR in seven and six out of eight cases, respectively.

8.3 Detailed Evaluation
Next, we assess different design aspects separately in detail.

Redundancy Elimination. Results in Table 6 indicate that
the use of sliding pointers brings 1.78×-9.47× end-to-end
speedup over the vector-copying approach under the BI
model. Interestingly, not only is the edge group update time
reduced, but also the computation time. Similar results were
also observed on the FW and BW models. This is because
the sliding pointers method uses a single vector to store all
edges of a vertex, improving the locality, compared to the
design using separate vectors for different edge groups.

Edge Derivation Strategy. Figure 7 compares the two edge
derivation strategies under the BI model. The results show
a dichotomy: the grammar-driven method excels in pointer
analysis cases (over 20× speedup), except for “PT-linux”,
while the topology-driven one runs faster in all data-flow
analysis cases and “PT-linux” (about 2× speedup). The above
performance disparity may be linked to some input features.

• Grammar complexity. Simpler grammars imply fewer
cases (RHS of rules) to check for a given edge pair,
limiting the benefits of grammar-driven models.
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• Degree distribution. For vertices with relatively low
degrees, grammar-driven method does not have much
room for reducing “wasted checks”; on the other hand,
it suffers from poor locality due to the use of more
scattered 3D vector-based adjacency list.

For the above reasons, we chose to employ topology-driven
method for data-flow analysis (with a single grammar rule)
and grammar-driven approach for the two types of pointer
analysis (with 12 and 21 rules).
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Figure 9: Serial Performance of GraCFL

Data Locality. First, Figure 8 compares the performance
between serial BI models (gram-driven) with and without
the “new-old” optimization—always traversing the new edge
list in the outer loop and old edges in the inner loop (see
Section 6.1). The results indicate consistent benefits with the
“new-old” optimization, roughly cutting the time by half.

Figure 9 compares the serial performance among different
model directions. In general, the BI model performs better
than FW and BW models in seven out of eight cases, thanks
to the application of “new-old” optimization. Unfortunately,
as discussed earlier in Section 6.1, this optimization is not
applicable to FW and BW models.

When comparing the FW and BW models, the FW model
performs consistently better in the data-flow analysis. This
is related to the recursive grammar rules. The two grammars
for pointer analysis have both left and right recursions, while
data-flow analysis only exhibits left recursion. To test this,
we changed the only rule in data-flow analysis from left
recursion to right recursion (i.e., 𝑛 ::= 𝑒 𝑛). In this case, the
BW model wins in two out of three bechmarks.

Parallelization. First, as discussed in Section 6.2, both FW
and BW models are synchronization-free and can be run in
parallel at the vertex-level. Figure 10 reports the speedup
of the parallel FW model where the baseline is the case
when the number of threads is set to one. The machine has
a 16-core CPU with hyper-threading (i.e., 32 logical cores).
While the trends indicate improved performance with more
threads, the maximum speedup varies significantly across
benchmarks, ranging from 4.71× to 7.38×.

In contrast, the parallel BI model relies on concurrent data
structures (see Section 7.2) to handle potential simultaneous
reads and writes to the same vertex’s edge list. As shown
in Figure 11, increasing the number of threads improves
performance, but most benchmarks exhibit varying degrees
of scalability degradation compared to the parallel FWmodel
(Figure 10). In terms of the absolute execution time, the FW
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Table 7: Peak Memory Usage (in GB)

Benchmarks
GraCFL

FW BI
(1t) (32t) (1t) (32t)

DF
httpd 2.2 2.3 2.8 11.6

postgres 9.7 9.8 12.3 54.2
linux 14.7 14.8 18.5 77.7

PT
httpd 34.3 34.5 40.8 69.0

postgres 37.6 37.7 44.9 114.6
linux 22.7 22.8 29.3 156.4

JPT mapreduce 58.1 58.2 79.2 oom
hdfs 70.8 70.8 86.5 215.1

model outperforms the BI model on all benchmarks except
’PT-httpd’, with speedups ranging from 0.71× to 6.91×.

Furthermore, the use of concurrent data structures easily
leads to a significant increase in memory usage, as reported
in Table 7. Memory consumption increases by 2.00×-6.86×
when using 32 threads for the BI model.

8.4 Guidelines for System Configuration
Based on our results, GraCFL can be configured considering
computing resources and data characteristics.

Computing Resources. For environments with limited cores
(e.g., fewer than 4), the serial BI model often delivers the best
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performance. Conversely, with higher core counts available,
parallel FW and BW models are recommended for superior
efficiency. In memory-constrained settings, it is advisable to
avoid the BI model, especially its parallelized version, due to
its higher memory consumption.

Data Characteristics. The input properties are also crucial
for model configuration. In the presence of a large alphabet
Σ, we recommend enabling grammar-driven edge derivation.
When the grammar consists of only left or right recursion
rules, select the FW or BW model accordingly. In addition,
graph structures may also play a significant role, but their
dynamic nature and complex interactionwith grammarmake
practical leverage extremely challenging.

9 Related Work
Yannakakis introduced CFL reachability as a generalized
form of graph reachability [78]. To solve this problem, Melski
and Reps introduced a cubic algorithm [45]. After that, a
subcubic algorithm was designed by Chaudhuri [6, 7, 48].
More recently, Koutris [24] offered an Ω(𝑛2.5) lower bound
for Dyck-2 reachability, a special case of CFL reachability.

Systems for CFL Reachability. Building on the “Big Data”
perspective introduced byGraspan [73], several systems have
been designed for CFL-reachability-based interprocedural
program analysis. These include BigSpa [83], which utilizes
Spark and Redis for cloud-based analysis; Grapple [84], a
disk-based system for checking finite-state properties via
alias and data-flow analysis; Chianina [86], which models
flow-sensitive analysis as an evolving graph problem with
support of disk-based processing; BigDataflow [70], which
designs a distributed worklist algorithm targeting clusters;
and DStream [74], an out-of-core streaming system for IFDS
analysis, solved as CFL reachability problems [54].

Additionally, numerous systems have been developed for
Android app analysis, such as FlowDroid [2], DroidSafe [14],
LiveDroid [11], DiskDroid [34], and SADroid [33], to name a
few. These systems are typically built on top of code analysis
frameworks like Soot [72] andWALA [12], whose analyses
are driven by CFL reachability-based tabulation solvers.

Alternatively, a Datalog engine, like Soufflé [59], DLV [32],
and SociaLite [60] or recursive state machines (RSMs) [1,
6] may also be employed to solve analysis problems that
are equivalent to CFL reachability problems. However, they
require a slightly different form of problem formalization.

Algorithmic Optimizations. There is also growing effort
devoted to algorithmic optimizations of CFL reachability.
Pearl [63] batches the propagation of reachability relations
to improve edge derivation efficiency. STG [62] decomposes
the context-free grammar and adopts a staged processing
strategy for better efficiency, while Skewed Tabulation [28]

aims to avoid inserting unnecessary summary edges during
solving IFDS problems. Some other works focus on graph
simplication, including graph folding [31], which collapses
nodes to reduce graph size, and cycle elimination [10, 29, 76],
which detects collapsible cycles in the graph to accelerate
the calculation of transitive closure.

Most of the above optimizations are orthogonal to the
ideas proposed in this work and can potentially be integrated
to further enhance GraCFL.

Dyck Reachability. In addition to general CFL reachability,
various variants have been studied in the literature, with
Dyck reachability being the most extensively explored [5, 23,
25, 36–39, 64, 71, 80, 81], which is often tailored to specific
problem domains or requirements within program analysis.

Vertex-Centric Graph Processing. Originally developed for
distributed platforms [43], vertex-centric graph processing
has since been adapted to various platforms, which include
in-memory systems [65], out-of-core [26], as well as GPU [22,
47] and out-of-GPU-memory [56] environments.

CFL Parsing. CFL reachability analysis can be viewed as
CYK parsing [8, 21, 58, 79] over a graph. Recent system
optimizations [18–20, 27, 35, 57] have been proposed for
parsing large volumes of JSON—a widely used context-free
language for data exchange and storage on the Web.

Insights from both the existing system design of graph
processing frameworks and the algorithmic optimizations
in CFL parsing could potentially inform new optimization
strategies for graph systems addressing CFL reachability.

10 Conclusion
This work explores the design space of a vertex-centric graph
system for CFL reachability, a classic problem in program
analysis. Specifically, it defines a multi-directional model,
where each direction provides a different perspective on the
problem-solving process. By systematically examining the
model in terms of computation redundancy, edge derivation
strategy, locality, and parallelism, this work provides a series
of new insights into optimizing the graph system. Based on
these insights, it presents GraCFL, a high-performance graph
system that significantly outperforms state-of-the-art graph
systems for solving large-scale CFL reachability problems.
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