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Abstract
A production microservice application can have multiple

services with varying call graphs, and a microservice may

be shared across different call graphs. Improving resource ef-

ficiency in such complex applications requires proper bench-

marks, but production traces are often too large to be used in

experiments. To this end, we propose a Service Dependency

Graph Generator (DGG) that comprises a Data Handler and
a Graph Generator, to generate service dependency graphs

of benchmarks that incorporate production-level character-

istics from traces. The data handler constructs fine-grained

call graphs with dynamic interface and repeated calling fea-

tures from the trace, and then clusters these call graphs

based on the topological and invocation types. The graph

generator uses a random graph model to simulate real mi-

croservice invocations, generating multiple call graphs and

merging them into small-scale service dependency graphs

with production-level characteristics. Case studies show that
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DGG-generated graphs closely resemble real traces in topol-

ogy. Moreover, evaluating the same resource scaling strategy,

DGG-generated benchmarks show a 24.2% increase in re-

source efficiency while real trace benchmarks show a 27.3%

increase, proving that DGG can yield similar results in eval-

uating resource management strategies to real-world traces.
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1 Introduction
Microservice architecture is an emerging paradigm in mod-

ern software development, which decomposes the mono-

lithic service into loosely coupled, independently deployable

microservices [3, 36]. A service composed of microservices

can be denoted as a Directed Acyclic Graph (DAG) where

the vertices and edges represent the microservices and call

dependencies, respectively [22, 23]. To guarantee the Quality

of Service (QoS) [11, 39, 49], the computing resources of each

microservice need to be scaled with the load change.

As observed from open-source microservice traces [15, 22,

23], a service often exhibits intricate call graphs with diverse
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Figure 1: An example service dependency graph and
its three call graphs.

vertices and edge types. Figure 1 shows the service depen-

dency graph of a service from the Alibaba trace and its three

call graphs. All call graphs of a service form its service de-
pendency graph. Queries accessing the same service may go

through part of the microservices based on user-specified re-

quirements, forming different call graphs [22, 23]. Moreover,

there are stateless and stateful microservices (e.g., business

logic and databases) [47], and diverse communication modes

(e.g., Remote Procedure Call (RPC) and HTTP) [22, 23]. Both

stateful and stateless microservices have a set of Application

Programming Interfaces (APIs) for upstream microservices,

and some microservices are shared by call graphs [15, 24].

For instance, microservice H has two interfaces 𝑎 and 𝑏 that

are called by different call graphs in Figure 1.

While the traces are often too large to be reproduced

in research, it is important to build benchmarks
1
that re-

flects the characteristics of production microservice appli-

cations [12, 13, 38, 42, 45, 50]. Current benchmarks are of-

ten abstracted from small-scale applications, lacking com-

monly existing production characteristics like dynamic in-

terfaces [12, 13, 38, 42]. For example, Google Online Bou-

tique [13] has 5 call graphs and 11 microservices, with an

average depth of 2.8 and only 3 microservices featuring dy-

namic interfaces. Nevertheless, observed from the real Al-

ibaba trace, there are more than 40 call graphs per service,

with the maximum call depth exceeding 15. Moreover, 48.8%

of microservices have more than two interfaces, and a service

can include more than 500 microservices. The assistant tools

that allow researchers to customize benchmarks [10, 33] also

fail to capture realistic production characteristics.

Several automatic tools are also proposed to generate call

graphs from production characteristics [22, 23]. They are not

sufficient for two major defects. As for the first defect, the

characteristics of the production microservices that guide

the generation of benchmarks are incompletely analyzed.

1
A benchmark is a service composed of microservices.

Although previous studies have examined the call graph

characteristics of microservices, they still lack a thorough

analysis of service dependency graph variations, microser-

vice inter-relationships in call graphs, and various interfaces

for individual microservices. These characteristics are crucial

for investigating microservice resource scaling, as they can

lead to heterogeneous computing resource demand of mi-

croservices. In this case, current graph generation tools fail

to capture the full complexity of production microservices.

As for the second defect, the services generated by ex-

isting tools have large deviations from reality. The service

dependency graph is generated based on the overall trace

statistics, without perceiving the variations between differ-

ent services. Moreover, the generated call graphs have little

inter-relationship, which cannot reflect microservice shar-

ing features among different call graphs. Also, inside a spe-

cific call graph, the repeated calling and sibling relationship

among microservices are not reflected. From the perspective

of individual microservices, the characteristics of various

interfaces are ignored in these tools.

To address the above issues, we propose a Service Depen-
dency Graph Generator (DGG) that includes a Data Handler
and a Graph Generator to generate the service dependency
graphs of benchmarks that include the production character-

istics
2
. It is proposed on the basis of three new observations

from the thorough analysis of production traces. 1) Upstream

microservices may have repeated calls to the downstream

microservices, and microservices have dynamic interfaces

called by different call graphs. 2) The dependency graphs of

different services vary significantly in topology and invoca-

tion patterns. 3) Microservices typically invoke a set of child

microservices, and the probability of a microservice calling a

specific children set is influenced by its sibling microservices.

Based on above three observations, the design require-

ments of DGG is to capture repeated callings and dynamic

interfaces, address the variability among different service

types, as well as represent the invoked microservices as the

children set while consider the effect of sibling microservices.

Therefore, DGG’s data handler first constructs fine-grained

call graphs from production traces with the dynamic inter-

faces and repeated callings, and merges them to form depen-

dency graphs. Then, it clusters the dependency graphs into

different categories based on their topological and invocation

features. Based on the organized data, the graph generator

creates random graph models to represent microservice calls

as children set invocations that are influenced by the sibling

microservices. It then generates call graphs based on these

models and merges them to form the final dependency graph.

We also conduct detailed case studies on using DGG to

generate service dependency graphs, as well as investigating

2
DGG is open-sourced via https://github.com/dufanrong/DGG.

https://github.com/dufanrong/DGG
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the similarity in evaluating resource management efficiency

between DGG-generated benchmarks and real-trace based

benchmarks. In more detail, we use DGG to generate differ-

ent types of service dependency graphs with associated call

graphs, and investigate the similarities between the gener-

ated and real call graphs in terms of topology. The results

show that the call graphs generated by DGG are similar

to real-world ones. Moreover, we validate the similarity of

evaluating the same resource scaling strategy efficiency on

DGG-generated benchmarks and benchmarks for real traces.

Results show that this strategy increases resource efficiency

by 24.2% and 27.3% on average while ensuring the QoS on the

DGG’s benchmarks and real-trace benchmarks, respectively.

These results show that DGG’ benchmarks yields similar

results in evaluating the efficiency of resource management

strategies to benchmarks based on real-world traces.

The major contributions of this paper are as follows.

• In-depth analysis of productionmicroservice traces.
The analysis reveals novel observations of production

microservices that motivate the design of DGG.

• The design of the dependency graph generator
that incorporates production characteristics.DGG
first constructs fine-grained graphs from production

trace and clusters them into different categories. Then,

DGG generates service dependency graphs for each

service type based on novel random graph models.

• Case studies on benchmark generations and mi-
croservice resource scaling efficiency evaluation.
We validate the topology similarity between DGG’s

generated graphs and the real-world ones, as well as

the similarity between DGG-generated benchmarks

and real-world benchmarks on evaluating efficiency

of resource management strategies.

2 Related Work
In this section, we discuss related work on cloud trace anal-

ysis, microservice benchmarks, and call graph generators.

Cloud trace analysis: Some studies analyzed the runtime

performance [4, 7, 8, 32] or resource usage [35] of lots of

types of cloudworkloads or production clusters. These works

did not aim at the microservice architecture. Moreover, some

other studies focused on the characteristics of microservice

call graphs [15, 22, 23, 44, 48]. However, they lacked in-depth

exploration of the variations in service dependency graphs,

the relationships between microservices in call graphs, and

the dynamic interfaces of individual microservices.

Microservice benchmarks:Numerous benchmarkswere

developed for research on microservice resource scaling [12,

13, 42, 45, 50], but they failed to reflect the realistic charac-

teristics of real-world microservices [34]. Specifically, Death-

StarBench [12] had 3 services, with 4, 3, and 1 call graphs,

respectively. 𝜇suit [42] consisted of four different services,

each with only two microservices, whereas production ser-

vices usually consist of dozens to hundreds of microser-

vices [19, 22]. Moreover, these benchmarks lack rich commu-

nication modes of realistic microservices that significantly

affect latency and resource management [18, 26]. For exam-

ple, 𝜇suit only adopted gRPC for inter-microservice com-

munication. At last, these benchmarks include little sharing

characteristic among microservices, which commonly exists

in production environment [24, 34].

Some previous works also proposed assistant tools to sup-

port flexible customization of microservice scale, topology,

and behaviors by developers [10, 33], but they cannot capture

production microservice characteristics automatically.

Call graph generation tools: Luo et al. proposed a call

graph generator based on the distribution of production mi-

croservices [22, 23]. However, this generator modeled the

overall distribution of all services, and thus cannot capture

the variations in different service dependency graphs. The

generated call graphs are also not inter-connected, making

it difficult to construct a complete service dependency graph.

Moreover, this tool failed to consider several production

microservice features, including microservice sharing, com-

munication modes, and sibling effects among microservices.

3 Background and Terminology
Service Dependency Graphs and Call Graphs. The user
queries may go through part of the microservices in the ser-

vice dependency graph based on user characteristics, forming

different call graphs. Microservices accessed by multiple call

graphs are referred to as shared microservices in this paper.

For instance, an e-commerce recommendation service can

recommend products based on two filter conditions, includ-

ing the price and rate microservices. The user queries that

select price filtering, rate filtering, and both price and rate

filtering will form three different call graphs, respectively.

The three call graphs share the price and rate microservices.

Inside a service dependency graph or call graph, there is an

entry microservice for receiving user queries, e.g., nginx [30].

For a specific call, the triggering and called microservices

are the upstream and downstream microservices (UM and

DM) [22, 23]. An UM typically calls a set of DMs, referred

to as the children set, and the DMs with the same UM are

considered as sibling microservices. In addition, a single UM

can have multiple children sets. In Figure 1(d), A is the entry

microservice that receives queries via HTTP. B and C are

sibling microservices, as well as they are DMs of A (which is

the UM) and also construct the children set of A.

The topological characteristics of the service dependency

graph or call graph mainly encompass depth and width.

Depth is the longest path from the entry microservice to any
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other microservice, while width is the maximum number of

microservices at any given layer of depth. In Figure 1(b), the

depth of this call graph is 5 and the width is 1.

Microservices Types. There are stateful and stateless

microservices in production [47]. Stateful ones are typically

databases and caching middlewares like mongodb [29] and

memcached [27]. Stateless ones are mostly related to busi-

ness logic [22]. Based on their interactions with downstream

microservices, stateless microservices are further categorized

into RELAY, LEAF, and NORMAL [22]. RELAY must have

downstream microservices, LEAF no longer calls others, and

NORMAL will call others with a certain probability.

Communication Modes.Microservices mainly commu-

nicate through Inter-Process Communication (IPC) [46], Re-

mote Procedure Call (RPC) [41], or Message Queue (MQ) [12].

IPC typically occurs between stateless and stateful microser-

vices [22], like calling mongodb and memcached. RPC is a

type of synchronous communication, in which the requester

needs to wait for the reply of the responser with a blocking

mode. MQ is an asynchronous method where microservices

communicate via message queues like Kafka [20] and Rab-

bitMQ [16]. In this model, there is no need for immediate

response, enabling non-blocking communications.

4 Microservice Trace Analysis
In this section, we analyze the characteristics of the service

dependency graphs, call graphs, and call characteristics of

microservices in the production clusters of Alibaba and Meta.

These are the only two open-source microservice traces, rep-

resenting typical cloud applications (Taobao and Facebook).

4.1 Overview of Alibaba and Meta Traces
The Alibaba trace dataset v2022 [2] has over 20 million call

graphs involving more than 17,000 microservices across ten

clusters over 13 days. In this trace, each service is identi-

fied by a service ID, while each user query is tracked with a

unique trace ID. Each pair of microservice calls is identified

by a rpcID, including details about the upstreammicroservice

(UM), the downstream microservice (DM), the type of com-

munication (rpctype), the interface of the downstream mi-

croservice invoked, etc. [22, 23]. We randomly select the data

of 80% services in this trace for trace analysis in this section

and for evaluating the similarities between DGG-generated

and real call graphs in Section 6.1. A service refers to all data

in the trace associated with the same service ID. Moreover,

we use the remaining 20% of the data to validate our trace

observations in resource management in Section 6.2.

The Meta trace dataset [28] features a microservice topol-

ogy with 18,500 active services and over 12 million service

instances. This trace includes information on the service

type, call depth, maximum width, the set of downstream
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Figure 2: Total number of queries and queries of dif-
ferent call graphs for the service S_130831269 in the
Alibaba traces.

microservices (DM set) invoked by each microservice, the

number of upstream microservice (UM) invocations to the

children set in a single query, and other relevant metrics [15].

4.2 Characterizing Dependency Graphs
Since the Meta trace [28] lacks complete dependency graph

information, we analyze the characteristics of the Alibaba

trace [2] in this subsection. We have two major observations.

1) Production service dependency graphs are dynamic over

time. These graphs encompass many different call graphs,

with their proportions shifting dynamically. 2) There is sig-

nificant variation in topological characteristics and microser-

vice invocation patterns across service dependency graphs.

4.2.1 Dynamic Service Dependency Graphs. Service depen-
dency graphs in production exhibit dynamic behaviors, with

call graphs changing over time. The occurrences of services

in Alibaba traces follow a long-tailed distribution, where a

small number of service dependency graphs contribute most

of the query counts. On average, there are over 45 call graphs

in each service dependency graph.

For a service, the number of queries per minute changes

over time, as do queries accessing different call graphs. For

example, Figure 2 shows the total query number and the

number of queries accessing each call graph over time, for

the service with the highest number of queries (S_130831269)

in Alibaba traces. We observe that obvious variations in both

the total queries and queries accessing different call graphs.

4.2.2 Topological Differences in Dependency Graphs. Differ-
ent service dependency graphs in production exhibit signifi-

cant differences in topology and invocation patterns.

In terms of the topology, the depth and width of these

graphs vary greatly. For the top 20 services with the most

queries, the 4th and 7th top services have a depth of 2 while

8th and 11th top services reach a depth of 6. The width also

varies, for example, the 2nd and 19th top services have a

width less than 2, while the 4th and 7th top services ex-

ceed 14. In terms of invocation patterns, specific patterns
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Figure 3: Distribution of the children set sizes for mi-
croservices.

are unique to certain dependency graphs. For instance, the

self-invocation pattern (i.e., a microservice calls itself) is only

present in 1st, 8th, and 11th top services. Moreover, unlike

the other services, the 1st, 4th, and 7th top services do not

include calls to databases or memcached.

4.2.3 Insights from Characterizing Dependency Graphs. Ser-
vice dependency graphs in production clusters are dynamic,

each consisting of multiple call graphs. To utilize produc-

tion microservice data for research, it is necessary to extract

features to generate simulated service dependency graphs.

Given the large topological and invocation pattern differ-

ences, we should categorize them using clustering methods

to study features and construct benchmark for each category.

4.3 Characterizing Call Graphs
Both Alibaba and Meta traces are used for analysis, and the

key observations are as follows. 1) Microservices overlap

among the children sets of different call graphs. 2) Some

microservices within a children set may be called multiple

times. 3) The probability of a microservice invoking different

children sets is influenced by its sibling microservices.

4.3.1 Characteristics of Children Sets. Figure 3 shows the
distribution of children set sizes in both traces. The children

set size is the number of different microservices contained

within a single children set. In the Alibaba trace, the sizes

of the children sets range from 1 to 10, while those in Meta

can be as large as 50. There are two major characteristics of

microservice calls to children sets.

Overlap inChildren Sets:Manymicroservices are shared

by queries from different call graphs, with significant over-

lap in the children sets, meaning the same microservice is

invoked in multiple call graphs. In the Meta trace, 92.2% of

microservices appear in different children sets. Similarly, in

the Alibaba trace, this overlap rate is 77.1%.

Repeated Calls: Repeated calls refer to a UM calling

the same DM multiple times within a specific query, typi-

cally driven by application logic [23]. For example, in Google

Online Boutique [13], the "currency" microservice is called

Table 1: Statistics for the number of repeated calls to
each microservice in the traces

Meta Trace Min Median Mean P99 Max

Total 2 17 210 2,339 2,392

Alibaba Trace Total Database Memcached Others

Min 2 2 2 2

Median 3 3 5 3

Mean 16 13 30 12

P99 374 198 469 75

Max 1080 397 537 1080

twice for displaying product prices: first to fetch available

currencies, then to convert prices. In the Meta trace, 20.4%

of repeated calls occur within children sets, and this value

is 16.2% for the Alibaba trace. Notably, database and mem-

cached microservices exhibit a much higher rate of repeated

calls at 52.5% in the Alibaba trace. Tables 1 provide detailed

statistics on the number of repeated calls in both datasets.

4.3.2 Sibling Set Influence. The sibling microservices of an

UM (i.e., the sibling set) can influence its probability of in-

voking its children sets. Given a service dependency graph

𝐺 (𝑉 , 𝐸) with microservices 𝑉 and invocation relationships

𝐸. 𝐺 can include multiple call graphs 𝐶𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 ). For each
call graph𝐶𝐺𝑖 , microservice𝑢 has a sibling set 𝑆𝑖 (nodes that

share the same UM as 𝑢) and a children set 𝐶𝑖 (nodes that

are invoked by 𝑢).

The 𝑃 (𝑢 → 𝐶𝑖 ) represents the probability that microser-

vice 𝑢 invokes the children set 𝐶𝑖 . It is calculated as the

proportion of queries where 𝑢 invokes 𝐶𝑖 out of all queries

where 𝑢 invokes any possible children set. 𝑃 (𝑢 → 𝐶𝑖 | 𝑆 𝑗 )
represents the probability that microservice 𝑢 invokes the

children set 𝐶𝑖 given that the sibling set of 𝑢 is 𝑆 𝑗 . When

there exist 𝑃 (𝑢 → 𝐶𝑖 | 𝑆 𝑗 ) ≠ 𝑃 (𝑢 → 𝐶𝑖 ), we say that the

probability of microservice 𝑢 invoking the children set is

influenced by the sibling set. In extreme cases, we might

have 𝑃 (𝑢 → 𝐶𝑖 | 𝑆 𝑗 ) = 1, meaning the sibling set completely

determines the children set that 𝑢 invokes.

In the Alibaba trace, 55.7% of the services are influenced by

sibling sets, where the probability of their microservices in-

voking DMs is related to sibling sets. In these services, 92.7%,

64.8%, and 76.2% of the microservices are influenced at call

depths of 3, 4, and 5, respectively. This variation relates to

the number of microservices at each depth: more microser-

vices at the same depth lead to more sibling set combinations

impacting children set calls. The sibling set influence is de-

termined by the nature of the microservice architecture. A

user query triggers inter-microservice calls between related
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microservices, meaning those in the same call graph are func-

tionally related. In some services, this functional correlation

is more obvious, demonstrating sibling set influence.

Sibling effect is common in microservice clusters. We con-

sulted authors of Meta trace paper [15] on Github, and they

confirm that it is common in Meta cluster. This finding cre-

ates opportunities for more accurate call graph generation

and microservice architecture optimization. First, modeling

microservice calls as a probability model influenced by sib-

ling sets better reflects the real-world production cluster

scenarios, rather than considering only the two-level calls

between UM and DM. Second, microservices with significant

sibling set influence can be reorganized into larger microser-

vices. In Figure 4, microservice 𝐵 calls 𝐸 when its sibling

set is {𝐶} and calls 𝐹 when its sibling set is {𝐷}. This sug-
gests that 𝐵, 𝐶 , and 𝐸 are tightly coupled and can be merged

to reduce inter-microservice call overheads. Similarly, the

microservices 𝐵, 𝐷 , and 𝐹 can also be merged.

4.3.3 Insights from Characterizing Call Graphs. To generate

more realistic simulated call graphs from production traces,

we should model downstream microservices as children sets

and consider richer call information, including repeated calls

and sibling set influence. Moreover, both fine-grained tracing

and resource management of repeated microservice calls are

essential for more effective microservice resource scaling.

4.4 Characterizing Individual Microservices
Since the Meta trace [28] lacks detailed microservice inter-

face information, we analyze individual microservices using

the Alibaba trace [2]. We have two key observations: 1) Sig-

nificant variation exists in the number of interfaces provided

by microservices with different communication patterns. 2)

Microservice interfaces are called by different call graphs.

4.4.1 Types of Microservice Interfaces. We observe that the

memcached and http-called microservices have more inter-

faces, while other microservices are simpler and have fewer

interfaces. Most of the microservices in the Alibaba are rela-

tively simple with 88.31% of them have less than 10 interfaces.

The number of microservice interfaces varies significantly

across different communication modes. Table 2 presents sta-

tistics on the number of microservice interfaces under vari-

ous communication modes. The number of interfaces for the

Table 2: Number of interfaces across different commu-
nication modes

db http mc mq rpc

Min 1 1 1 1 1

Median 1 1 2 1 2

Mean 2 11303 31 3.0 9

P99 12 14731 26 39 74

Max 22 1355296 2728 76 89

HTTP-type microservices is notably higher. To know the rea-

sons, we consulted the authors of the Alibaba trace regarding

the HTTP interfaces. They informed us that the number of

interfaces in an HTTP microservice (e.g., entering microser-

vice) is often correlated with the parameters involved, which

can lead to a high interface count, particularly when multiple

parameters are present.

4.4.2 Interface Calling Patterns. We observe that microser-

vicesmay be shared by call graphs from different user queries,

and these different call graphs may call different interfaces

of the microservice. In the Alibaba trace, there are five main

patterns of call graphs calling the interfaces of microservices.

a) Some microservices are only called by the same call

graph, which calls the same interface of the microservice

each time. b) Microservices called by the same call graph

may also call different interfaces. c) Different call graphs

call the same interface of the microservice. d) Multiple call

graphs share the microservice and each call graph calls a

different interface of the microservice. e) For a microservice,

some call graphs call the same interface, and the other call

graphs call different interfaces.

4.4.3 Insights from Characterizing Individual Microservices.
We should consider different interface calling patterns in

the model of individual microservices when generating sim-

ulated service dependency graphs from production traces.

Moreover, it is beneficial to conduct fine-grained tracing and

resource management of different microservice interfaces,

to improve resource scaling efficiency.

5 Dependency Graph Generation with DGG
In this section, we introduce the overview of DGG, followed

by the design details and theoretical analysis of DGG’s model.

5.1 Overview of DGG
As shown in Figure 5, we design and implement a Service
Dependency Graph Generator (DGG) to generate mi-

croservice benchmarks that simulate realistic characteristics

of services in production cluster traces. DGG consists of a

Data Handler and a Graph Generator. The data handler is

responsible for organizing the large amount of data in the
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Figure 5: Design overview of DGG.

original production cluster trace. Based on the organized

data from the data handler, the graph generator takes the

clustering category (𝑖) and call graph generation times (𝑛)

from the user, and then adopts two steps to generate the

service dependency graphs with a series of call graphs.

Based on observations from trace analysis, microservice

calls often exhibit repeated invocations, dynamic interfaces,

and significant differences among services. Therefore, DGG’s

data handler adopts two steps to effectively address these

characteristics. First, the fine-grained call graph constructing
constructs precise call graphs from the production traces and

merges them into different dependency graphs. Then, the

dependency graph clustering classifies dependency graphs of

services into different categories based on their topological

and invocation characteristics.

To generate simulated call graphs that resemble realistic

ones, DGG’s graph generator first constructs a random prob-

abilistic model for each service. Based on the observations

in Section 4.3, it models downstream microservices as chil-

dren sets and incorporates the impact of sibling sets, rather

than modeling relationships solely as a two-level structure

between UM and DM. Using these models, the Call Graph
Generating process generates 𝑛 call graphs and merges them

into the service dependency graph.

DGG works in the following steps. 1) The data handler

constructs precise call graphs from production traces and

merges them into different dependency graphs of services. 2)

The data handler then clusters the dependency graphs into

different categories based on their topological and invocation

characteristics. It also obtains the probability of occurrence

of each service in each category. 3) With user inputs of the

service category 𝑖 and the number 𝑛 of call graph generated,

the graph generator builds a random graph model for each

service in the category 𝑖 . 4) Based on the random models, the

graph generator then generates the call graphs 𝑛 times, with

UM UM_interface DM DM_interface
entry none A func1

A func1 B func2
A func1 B func2
A func1 B func3

entry

A_func1

B_func2 B_func3

1

2 1

entry

A

B

trace data fine-grained
call graph

coarse-grained
call graph

Figure 6: An comparison example of fine-grained and
coarse-grained call graphs.

each time selecting a model of a service according to their

probabilities of occurrence. 5) At last, the graph generator

merges all call graphs to form the service dependency graph.

DGG is implemented in Python, and we use 𝐺𝑟𝑎𝐾𝑒𝐿 li-

brary [40] to measure the similarity between dependency

graphs. The statistical code lines of DGG are about 3000.

5.2 Data Handler
In this subsection, we introduce the design of fine-grained

call graph constructing and dependency graph clustering.

5.2.1 Fine-grained Call Graph Constructing. Prior works [22,
24] construct call graphs as directed acyclic graphs, with

vertices representing microservices and edges representing

invocation relationships. However, this method fails to cap-

ture the repeated calls and dynamic interfaces common in

production microservices. To obtain fine-grained call graphs,

we represent microservice invocations triggered by queries

using weighted directed graphs. We define vertices by com-

bining the microservice name with the interface being called.

The edges not only indicate invocation but also use weights

to represent the number of times a DM is repeatedly called.

Figure 6 shows fine-grained and coarse-grained call graphs

generated from the same trace data. The fine-grained call

graphs includes the representation of repeated calls and dy-

namic interfaces compared to coarse-grained ones. For each

service in the trace, we construct all its fine-grained call

graphs and merge them into the service dependency graph.

Since repeated calls and dynamic interfaces also impact

microservice resource usage, this call graph constructor can

be utilized for online microservice resource scaling to en-

hance resource allocation efficiency. We will use this scaling

strategy in Section 6.2 to validate the similarity between

DGG-generated benchmarks and real-world benchmarks on

evaluating the resource efficiency.

5.2.2 Dependency Graph Clustering. To cluster the service

dependency graphs by topological features and invocation

properties, we use the Graph Kernel method [9, 40] to mea-

sure the similarity between dependency graphs, and then

use K-means [1, 14] to cluster all the dependency graphs.

The inputs to the Graph Kernel include the adjacency ma-

trix of dependency graphs, the microservice labels (e.g., db,
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memcached, normal), and the communication modes (e.g.,

http, rpc, mq), and the 𝐾 value representing the clustering

category number. The 𝐾 value is selected with the high-

est silhouette coefficient, which is a metric to measure the

clustering quality. Each cluster groups services with similar

topological and call characteristics, enabling users to choose

specific clusters for generating simulated graphs.

Adopting the above clustering method on the Alibaba

trace [2], we categorize all the service dependency graphs

into 6 categories. We use Graph Kernel method to quantify

the similarity of different service dependency graphs both

within each cluster and across different clusters. We find the

intra-cluster similarity is 3.4X higher than the inter-cluster

similarity, proving the accuracy of our clustering method.

5.3 Graph Generator
In this subsection, we introduce the process of building ran-

dom graph models, and the algorithms for generating call

graphs and dependency graphs using these models.

5.3.1 Random Graph Modeling. The variables used in the

random graph modeling are shown in Table 3. For each ser-

vice 𝑆 in the trace dataset, we establish a random graphmodel

𝐺𝑠 (𝑉𝑠 , 𝐸𝑠 ) based on its real dependency graph 𝐺 (𝑉 , 𝐸).
The 𝑉 represents the set of vertices in 𝑆’s service depen-

dency graph, where each 𝑣 ∈ 𝑉 is a triplet representing the

microservice’s name, the interface being called, and its label,

as (ms_name, interface, label) . The label set is L = {database,
memcached, normal, relay, leaf}. The label of a microservice

is determined by simple rules. If the communication mode

is “db” and “mc”, the labels are “memcached” and “database”,

respectively. For other communication modes, we examine

whether the microservice continues to call other microser-

vices. If it calls others, the label is “relay”. If it never calls

others, the label is “leaf”. Otherwise, the label is “normal”.

The 𝐸 denotes the set of edges of the dependency graph

of 𝑆 , where each edge is represented as a tuple (𝑢, 𝑣,𝑤, 𝑡). 𝑢
and 𝑣 represents the source and destination microservices,

𝑤 indicates the number of times 𝑣 is repeatedly called, and

𝑡 ∈ 𝑇 = {http, rpc, mq, mc, db} represents the communication

modes, which can be directly obtained from the trace data.

We model the probability of each children set being called

by a microservice. For a microservice 𝑢 in 𝑆 , let𝐶𝑢 represent

all possible children sets that 𝑢 may call. Each children set

𝐶 ∈ 𝐶𝑢 consists of vertices 𝑣 and the corresponding call edges
𝑒 . Therefore, each children set includes the microservice

name, interface, label, the number of repeated calls, and the

communication mode. An empty children set indicates 𝑢

does not call any other microservices. Let 𝐶𝐺 denote the set

of all call graphs for 𝑆 , where each call graph 𝑐𝑔𝑖 ∈ 𝐶𝐺 has

an associated occurrence count 𝑐𝑜𝑢𝑛𝑡 (𝑐𝑔𝑖 ).

Table 3: Variables used in Section 5.3

Variable Description
𝑆 A real service in the dataset

𝑉
Collection of all microservices in 𝑆 with

microservice names, interfaces, and labels

𝐸
Invocation edges in 𝑆 with UM, DM, number of

invocations, and communication mode

𝐿 Set of all possible microservice labels

𝑇 Set of all possible communication modes

𝐶𝐺 Set of all call graphs of 𝑆

𝑐𝑔𝑖 The 𝑖-th call graph of 𝑆

𝑢 A microservice in 𝑆

𝐶𝑢 Set of all children sets of 𝑢 in 𝐶𝐺

𝐶
A children set of 𝑢 with UM, number of calls,

and communication mode

𝑑 Depth of 𝑢’s call in the call graph

𝑠 Sibling set of 𝑢

count(𝑐𝑔𝑖 ) Number of times 𝑐𝑔𝑖 is queried in 𝑆

Considering the sibling set influence, and the impact of

microservices’ call depth on children set calls, we character-

ize this influence using the conditional probabilities. We first

define an indicator variable to indicate whether microservice

𝑢 calls a children set under the conditions of a given depth

and sibling set in a call graph as:

𝐼 (𝑢 → 𝐶, 𝑠, 𝑑, 𝑐𝑔𝑖 ) =


1 if vertex 𝑢 calls children set 𝐶 at depth 𝑑

with sibling set 𝑠 in call graph 𝑐𝑔𝑖 ,

0 otherwise.

(1)

Based on this, the probability that 𝑢 calls children set 𝐶

given 𝑢’s sibling set 𝑠 and depth 𝑑 can be calculated in:

𝑃 (𝑢 → 𝐶 | 𝑠, 𝑑) =
∑
𝑐𝑔𝑖 ∈𝐶𝐺 𝐼 (𝑢 → 𝐶, 𝑠, 𝑑, 𝑐𝑔𝑖 ) · 𝑐𝑜𝑢𝑛𝑡 (𝑐𝑔𝑖 )∑

𝐶′∈𝐶𝑢

∑
𝑐𝑔𝑗 ∈𝐶𝐺 𝐼 (𝑢 → 𝐶′, 𝑠, 𝑑, 𝑐𝑔 𝑗 ) · 𝑐𝑜𝑢𝑛𝑡 (𝑐𝑔 𝑗 )

(2)

The time to establish a random graph model for a real

service depends on the dependency graph scale. In our ex-

periments, the average model establishment time is 4ms.

5.3.2 Call Graph Generation Algorithm. Based on the es-

tablished random graph model, the call graph generation

process is as follows. 1) Initialization: The graph starts with

the vertex entry as the beginning of the query. 2) Vertex and

edge addition: For each vertex 𝑢 labeled as normal or relay,
determine its sibling set 𝑠 and depth 𝑑 . Based on Equation 2,

choose a children set 𝐶 and add it to the graph. For each

(𝑣,𝑤, 𝑡) in 𝐶 , add edge (𝑢, 𝑣,𝑤, 𝑡) to the graph. 3) Repeat for

each new vertex 𝑢 until no further vertices can be added.

Algorithm 1 shows the process of generating a call graph.

The output is a call graph 𝐺 stored as a list of call relation-

ships. Each element in the list has the structure (um_depth,
UM, DM, weight, compara), where 𝑢𝑚_𝑑𝑒𝑝𝑡ℎ represents the
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depth of 𝑈𝑀 in the call graph, 𝑈𝑀 and 𝐷𝑀 denote the re-

spective vertices,𝑤𝑒𝑖𝑔ℎ𝑡 indicates the number of times𝐷𝑀 is

repeatedly called, and 𝑐𝑜𝑚𝑝𝑎𝑟𝑎 is the communication mode.

A queue 𝑄 stores vertices that are not handled. Initially,𝐺 is

empty, and (1, (𝑒𝑛𝑡𝑟𝑦, 𝑛𝑜𝑛𝑒, 𝑟𝑒𝑙𝑎𝑦)) is pushed into 𝑄 (line 3).

In the main loop, the algorithm pops a vertex and its depth

(𝑑,𝑈𝑀) from 𝑄 (line 5). If𝑈𝑀 is labeled relay or normal, it
determines the children set based on random graph model

(lines 7-8). For other labels, the algorithm skips to next itera-

tion. For each target vertex in the children set, it generates a

new call relationship edge, adds it to 𝐺 , and pushes the new

vertex into 𝑄 (lines 9-12). The process continues until 𝑄 is

empty, then returns the call graph 𝐺 .

Algorithm 1 Call Graph Generator

Output: 𝐺 : A call graph stored as a list of call relations

1: 𝑄 ← queue to temporarily store vertices without generated

𝐷𝑀

2: 𝐺 is initialized as an empty list

3: Push (1, (𝑒𝑛𝑡𝑟𝑦, 𝑛𝑜𝑛𝑒, 𝑟𝑒𝑙𝑎𝑦)) into 𝑄
4: while 𝑄 is not empty do
5: (𝑑,𝑈𝑀) ← 𝑄.pop()
6: if 𝑈𝑀.𝑙𝑎𝑏𝑒𝑙 == 𝑟𝑒𝑙𝑎𝑦 or 𝑛𝑜𝑟𝑚𝑎𝑙 then
7: 𝑠 ← get_sibling_set(𝑈𝑀)
8: 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 ← children_set(𝑈𝑀,𝑑, 𝑠)
9: for target ∈ targets do
10: (𝐷𝑀,𝑤𝑒𝑖𝑔ℎ𝑡, 𝑡) ← (target.v, target.w, target.t)
11: 𝐺.add(𝑑,𝑈𝑀, 𝐷𝑀,𝑤𝑒𝑖𝑔ℎ𝑡, 𝑡)
12: 𝑄.push(𝑑 + 1, 𝐷𝑀)
13: else
14: continue
15: return 𝐺

Algorithm 1 has a time complexity of 𝑂 ( |𝑉 | · 𝑘), where
|𝑉 | is the total number of vertices in the call graph, and 𝑘 is

average size of the children sets. It uses an list to store edges

of the generated graph, with a space complexity of 𝑂 ( |𝐸 |),
where |𝐸 | is the total number of edges in the call graph. In

our experiments, the average time to generate a call graph is

0.7 ms. We use actual microservice names from the dataset,

effectively managing scenarios with multiple parents, depths,

or shared microservices across call graphs.

After all call graphs are generated with the user-specified

𝑛 times, DGG merges them to form a dependency graph.

5.4 Theoretical analysis
In this subsection, we analyze the probability distribution

similarity in topology between call graphs generated by DGG

and those observed in the real-world trace dataset. We exam-

ine three aspects: the width (microservices number) at each

layer, the depth of the call graph (total layers), and the total

number of microservices in the call graph.

We give a sketch for the proofs of main results in this

section, and the full proof can be found in https://github.

com/dufanrong/Theoretical-Proof.

Since our probabilistic model (Eq.(2)) ensures the children

set sizes in generated and actual call graphs match, we can

first prove the width distribution is the same at each layer.

Then, by using the fact that a call graph has exactly ℎ layers

only if all microservices at depth ℎ have empty children sets,

we can prove the depth distribution also matches. Finally, as

the microservice number in a call graph is the sum of the

microservices number (i.e., width) at each layer (i.e., depth),

we can prove the total count of microservices is the same.

The corresponding three propositions are as follows.

Proposition 5.1. Let𝑀𝑘 represent the vertex number at the
𝑘-th level of the call graph. We denote 𝑃gen_width (𝑀𝑘 =𝑚𝑘 ) as
the probability that the 𝑘-th level of the call graph has𝑚𝑘 ver-
tices according to a random graph model, and 𝑃real_width (𝑀𝑘 =

𝑚𝑘 ) as the probability that the 𝑘-th level of the real call graph
has𝑚𝑘 vertices. Then,

𝑃gen_width (𝑀𝑘 =𝑚𝑘 ) = 𝑃real_width (𝑀𝑘 =𝑚𝑘 ) (3)

Proposition 5.2. Let 𝐻 denote the total depth of a call
graph. Let 𝑃gen_depth (𝐻 = ℎ) denote the probability that a
generated call graph has depth ℎ, and 𝑃real_depth (𝐻 = ℎ) denote
the probability of depth ℎ in the real dataset. Then,

𝑃gen_depth (𝐻 = ℎ) = 𝑃real_depth (𝐻 = ℎ) (4)

Proposition 5.3. Let 𝑁 denote the total number of vertices
in a call graph, 𝑃gen_num (𝑁 = 𝑛) denote the probability that the
generated call graph has 𝑛 vertices, 𝑃real_num (𝑁 = 𝑛) denotes
the probability that the real call graph has 𝑛 vertices. Then,

𝑃gen_num (𝑁 = 𝑛) = 𝑃real_num (𝑁 = 𝑛) (5)

6 Case Studies
In this section, we first utilize DGG to generate service depen-

dency graphs and evaluate their topology similarity with real-

world ones. Then, we validate the similarity between DGG-

generated benchmarks and real-world benchmarks from the

traces in investigating resource management efficiency.

6.1 Graph Similarity of DGG
In this subsection, we first evaluate the graph topology simi-

larity between DGG to real-world traces, followed by com-

parisons of statistical features like width, depth, and mi-

croservice number. Then, we conduct an ablation study on

considering the sibling set effect and evaluate DGG’s effec-

tiveness on corner cases. Finally, we show DGG’s generality

on other benchmarks and traces.

6.1.1 Investigation Setup. Since the Meta trace [28] lacks

detailed microservice call information, the Alibaba trace [2]

https://github.com/dufanrong/Theoretical-Proof
https://github.com/dufanrong/Theoretical-Proof
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(a) Topology types of call graphs. (b) Frequencies of call graphs.

Figure 7: Topological similarity between the call graphs
from traces and the call graphs generated by DGG and
CGG, respectively.

is adopted in this subsection. We compare DGG to a state-of-

the-art microservice call graph generator (CGG) [22]. CGG

computes layer width and assigns labels to microservices

based on the probability distribution of the overall trace

dataset to generate a call graph. According to the six clus-

tering categories determined by DGG (Section 5.2.2), we

construct six service dependency graphs, each with 100,000

call graph generations by using DGG and CCG, respectively.

In this subsection, We compare call graph similarity in-

stead of directly comparing service dependency graphs, as

the call graphs represent each query execution path which

can capture dynamic interactions among microservices. We

use 𝑃 (𝐷 | 𝑚𝑜𝑑𝑒𝑙) to quantify topological similarity between

the generated and real-world call graphs. It denotes the pro-

portion of generated call graphs structurally identical to

real-world ones under different models (DGG or CGG). Two

call graphs are identical if their node names, labels, edges,

edge weights, and communication modes match exactly. We

calculate 𝑃 (𝐷 | 𝑚𝑜𝑑𝑒𝑙) based on the distinct topology types

and frequencies of the call graphs. For instance, when gen-

erating 5 call graphs, two of them have the same topology

type A and the other three have the same topology type B.

This results in two types of call graphs, and the frequencies

of the first and second types are 2 and 3, respectively.

Moreover, we quantify the statistical feature similarity by

using Jensen-Shannon (JS) divergence, which is proved to

be effective in comparing two probability distributions [5].

Smaller JS divergence indicates closer distributions.

6.1.2 Graph Topology Similarity. With the generated call

graphs of DGG and CGG, Figure 7 shows the 𝑃 (𝐷 | 𝐷𝐺𝐺)
and 𝑃 (𝐷 | 𝐶𝐺𝐺) in each clustering category and the overall

call graphs in terms of call graph types and frequencies.

We observe that, as for distinct types of generated call

graphs, the similarity of call graphs generated by DGG is

high across both each cluster category and the overall dataset,

with an average value of 90.9% for the six types. In contrast,

the call graphs generated by CGG exhibit lower similarity

to the real graphs, with an average value of 49.6% for the

(a) Percentages of Call graphs. (b) Average microservice number.

Figure 8: Call graph percentages and average microser-
vice number under different depths of the DGG, CGG,
and real-world dataset, respectively.

six types. As for the frequencies of generated call graphs,

the average accuracy of DGG is higher at 99.1%, while the

accuracy of CGG is 51.7%. In terms of both the types and

frequencies of generated call graphs, DGG shows higher

similarity than CGG, generating more accurate call graphs.

Specifically, in cluster category 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦3, 𝑃 (𝐷 | 𝐶𝐺𝐺) is
0%. This is because the call graphs of services in this cluster

category exhibit the repeated call feature to microservices,

but CGG fails to capture this pattern. Instead, CGG generates

call graphs where each microservice is called only once,

missing the critical repeated call relationships present in the

actual traces. Thus, every call graph generated by CGG does

not match the real-world ones.

DGG properly clusters the call graphs into different types

and considers multiple key characteristics like microservice

sharing and repeated callings during the generation process,

thus having a similar topology similarity. However, CGG

generates all call graphs according to the overall dataset and

does not comprehensively consider various characteristics.

6.1.3 Statistical Feature Similarity. Since the percentage of
call graphs in depths over 6 is less than 10

−5
in the Alibaba

trace, we show call graphs with depths less than or equal to

6 in this subsection. Moreover, the percentage of call graphs

with microservice numbers greater than 14 is less than 10
−6
,

so we also show call graphs with microservices less than 14.

Figure 8(a) shows the call graph percentages under differ-

ent depths of the DGG, CGG, and the real-world dataset,

respectively. DGG’s call graphs closely match the distri-

bution of real-world call graphs. In contrast, CGG shows

a higher percentage at depth 2 and lower percentages for

depths greater than 2, indicating early termination in the

generated call graphs. The reason could be that CGG has a

higher probability of generating microservices labeled “leaf”,

“memcached” and “db” that do not continue to invoke DMs.

As statistics, the JS divergence of call graph percentage dis-

tributions between the DGG and real-world dataset is 0.034,

whereas the value for CGG is 0.193.
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Figure 9: Cumulative call graph percentage distribu-
tion of the microsevice number. The red dotted line
highlights that, for the same number of microservices,
the DGG curve is closer to the Real-world curve than
the CGG curve.

Figure 8(b) shows the average number of microservices

(i.e., layer width) under different depths. DGG and CGG are

both relatively close to real-world dataset. This is because

CGG can also capture the distribution of the number of mi-

croservices at different depths in the real call graph during

the modeling process. DGG’s distribution is a little closer

to real-world call graphs compared to CGG, with a JS diver-

gence of 0.003 for DGG and 0.004 for CGG.

Figure 9 shows the cumulative call graph percentage dis-

tribution of microservice number of DGG, CGG, and real-

world dataset, respectively. We can observe that DGG’s curve

closely matches the curve of real-world, while CGG’s gener-

ated call graphs have fewer microservices. The JS divergence

between DGG and real-world call graph percentage distribu-

tions is 0.053, while the value for CGG is higher as 0.146.

6.1.4 Ablation Study of the Sibling Set Influence. To evaluate
the effectiveness of considering the sibling set as a condi-

tional probability in generating call graphs (Equation 2), we

conduct an ablation study to compare DGG and DGG-wos.

DGG-wos is a variant of DGG in which the sibling set is

excluded as a conditional probability in the modeling pro-

cess. Instead, DGG-wos generates downstreammicroservices

solely based on the upstreammicroservices and the call depth

during the call graph generation process.

Figure 10 shows the 𝑃 (𝐷 | model) of the call graphs gener-
ated by DGG and DGG-wos with the real-world call graphs

from traces. For both the overall set of call graphs and each

service cluster category, the call graphs generated by DGG

are more similar to the real call graphs than those generated

by DGG-wos. As for distinct types of generated call graphs,

the average accuracy of the six types is 90.9% for DGG, while

the value of DGG-wos is 85.1%. As for frequencies of gener-

ated call graphs, the average values of DGG and DGG-wos

are 99.1% and 98.5%, respectively.

Specifically, for clustering category 𝑡𝑦𝑝𝑒3, call graphs gen-

erated by DGG and DGG-wos reach a 100% similarity with

real ones. This is because the topology of the call graphs for

(a) Topology types of call graphs. (b) Frequencies of call graphs.

Figure 10: Topological similarity between call graphs
from traces and call graphs generated by DGG and
DGG-wos, respectively.

(a) Topology types of call graphs. (b) Frequencies of call graphs.

Figure 11: Topological similarity between the real trace
corner call graphs and the call graphs generated by
DGG, DGG-wos, and CGG, respectively.

this category is very simple, with a call depth of only 3 and

a width of only 2, and all simply calling Memcached.

The accuracy gap in the call graphs generated for the

𝑡𝑦𝑝𝑒0 cluster by DGG and DGG-wos is the largest, with

𝑃 (𝐷 | DGG) = 77.23% and 𝑃 (𝐷 | DGG-wos) = 55.2% for

distinct types, 𝑃 (𝐷 | DGG) = 98.7% and 𝑃 (𝐷 | DGG-wos) =
96.4% for frequencies. This is because the call graphs for this

category of services have more complex topologies. With an

average width of 3.4, compared to the overall average width

of 1.6, these wider call graphs exhibit more intricate sibling

microservice relationships.

DGG utilizes a sibling set as a condition for probability cal-

culation, achieving higher accuracy in generating call graphs.

In contrast, DGG-wos, which omits sibling relationships, re-

sults in lower accuracy. The difference between DGG and

DGG-wos is more pronounced in corner call graph cases,

which we will discuss later. According to state-of-the-art

work from production [6], the tail latency gap between sim-

ple and complex call graphs averages 20× across varying

loads, highlighting the importance of studying microservice

resource scaling in corner cases.

6.1.5 Similarity for the Corner Call Graphs. The corner call
graphs can significantly impact the end-to-end performance

of services, such as deep call graphs leading to increased

query latency. These call graphs are essential for studying
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resource scaling in microservices. Therefore, we evaluate

DGG’s effectiveness in generating corner call graphs. To

obtain corner call graphs for the trace dataset, we filter the

trace data to extract the following types for evaluations: ①
Deep: the call graphs with a depth greater than 6. ② Wide:
the call graphs with a width greater than 3. ③ APIs: the
call graphs invoke more than 2 interfaces of a microservice

within the same service. ④ Deep+APIs. ⑤ Wide+APIs.
Figure 11 shows the similarity between the call graphs gen-

erated by DGG, DGG-wos, and CGGwith the real call graphs

in the above cases. The average accuracy of the five types of

corner cases for call graph types is 85.6%, 68.5%, and 22.1%

for DGG, DGG-wos, and CGG, while the average accuracy

for the call graph frequencies is 96.8%, 95.0%, and 22.5% for

DGG, DGG-wos, and CGG, respectively. DGG still achieves

high accuracy in generating call graphs, even in corner cases,

demonstrating its generality. Moreover, CGG remains the

least accurate, and DGG-wos also performs worse than DGG

without considering the sibling set effect.

For in-depth analysis, in the APIs scenario, the call graphs
often involve microservices calling multiple interfaces of the

same microservice within the same children set. Since both

DGG and DGG-wos use the children set, rather than indi-

vidual microservices with its interface, both can effectively

handle such situations. Moreover, in theWide andWide+APIs
scenarios, the call graphs are relatively wide and shallow, and

DGG achieves higher accuracy in generating these graphs.

This is because DGG uses sibling relationships as condi-

tional probabilities, which allows it to more effectively han-

dle cases where microservices have multiple siblings. By

contrast, DGG-wos, which neglects the sibling effect, shows

decreased accuracy. At last, in the Deep and Deep+APIs sce-
narios, as the call depth increases, the number of iterations

in the probabilistic model also increases, resulting in a slight

decrease in the accuracy of the generated call graphs.

6.1.6 DGG’s Generality on Other Traces and Benchmarks. In
this subsection, we show DGG’s generality when adapting

to other traces and benchmarks. To the best of our knowl-

edge, there are currently only two available microservice

traces (Alibaba and Meta traces [15, 22]), and Meta trace

lacks fine-grained call information. Therefore, we adopt an

alternative approach using the hotel reservation (HR) and

social network (SN) applications in DeathStarBench [12] to

generate traces. HR and SN support 4 and 3 types of queries,

which refer to 4 and 3 types of distinct call graphs, respec-

tively. Corresponding to default configurations in the source

codes of DeathStarBench, we generate the traces at a Query-

Per-Second of 500 for 200 seconds, with the proportions

of 0.6:0.3:0.05:0.05 for the 4 types of queries of the HR and

0.6:0.3:0.1 for the 3 types of queries of the SN. We name these

two traces as H-Trace and S-Trace, respectively.

Table 4: Comparisons of generated call graph quantity

HR SN

CG1 CG2 CG3 CG4 CG1 CG2 CG3
Real 60127 30006 5017 4850 59627 30263 10110

DGG 60084 29937 5058 4921 59430 30163 10077

CGG 1160 831 767 4572 19497 19803 417

Then, we use DGG and CGG to generate call graphs based

on the H-Trace and S-Trace, respectively. Table 4 shows the
generated call graph quantity of DGG, CGG, and the real-

world values in the traces. DGG generates 4 call graphs for

HR and 3 call graphs for SN, all of which are topologically

identical to the real call graphs. Moreover, the generated

quantity of DGG for all call graphs is also very close to

the quantity of the real-world ones. This shows that DGG

is a flexible tool that can generate dependency graphs and

call graphs with trace-specific features for other traces as

well. By contrast, although CGG also generates the 4 and 3

types that are equal to the real-world ones for HR and SN,

respectively, the generated quantity has a large difference.

Moreover, CGG also generates many call graphs that do not

exist in the real-world ones.

6.2 The Effect of DGG on Evaluating
Microservice Resource Scaling

DGG generates service dependency graphs that contain re-

alistic characteristics from large-scale traces for producing

benchmarks to assist in resource management studies. In

this subsection, our goal is to validate that the benchmarks

generated by DGG have a similar effect in investigating the

resource efficiency of specific resource management strate-

gies to the benchmarks directly constructed from real-world.

6.2.1 Microservice Scaling Strategies. From our trace analy-

sis in Section 4, we identify two production characteristics

of repeated calls and dynamic calling interfaces, which are

required to be considered for microservice resource scal-

ing. Based on these, we define the fine-grained call graph,

where each vertex represents a microservice and its called

interfaces, and each edge represents repeated calling times

(Section 5.2.1). Using this fine-grained call graph, we propose

the FineGrained-Scale strategy, which traces fine-grained

call graph loads with Jaeger [17] at one-minute intervals, and

allocates resources based on real-time monitored loads. For

resource allocation decisions, we build offline linear regres-

sion models for each microservice in each call graph, with

load as input and computing resource demand as output, as

shown to be effective in recent studies [24, 38].

Moreover, prior microservice resourcemanagement works

constructed coarse-grained call graphs [21, 24, 25, 31, 37, 38,

43], neglecting various interfaces and repeated callings, thus
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Table 5: Experiment specifications

Specifications

Hardware Three nodes, Intel(R) Xeon(R) CPU E5-2630 v4 @

2.20GHz, 128GB Memory, 25 MiB L3 Cache

Software

Ubuntu 20.04.6 LTS with kernel

5.15.0-107-generic, Docker version 24.0.5,

Kubernetes version v1.20.4, Golang version 1.19.3,

gRPC version 1.29.1

different fine-grained call graphs are mapped to the same

coarse-grained call graph. With coarse-grained call graphs,

the aggressive [21, 24, 31, 43] or conservative [25, 38] strate-

gies can only be utilized for resource scaling, which scale

according to the maximum or minimum possible computing

resource usage (named MAX-Scale and MIN-Scale), respec-

tively. We also adopt the above two strategies in our evalua-

tions. For MAX-Scale/Min-Scale, the computing resources of

a microservice is allocated based on its coarse-grained total

load and the linear model of FineGrained-Scale that has the

maximum/minmum resource allocation value online.

6.2.2 Investigation Setup. We use two sets of benchmarks.

The first is DGG-generated dependency graphs in Section 6.1,

based on which we generate six benchmarks (named from

DGG-0 to DGG-5). The second is to randomly select six de-

pendency graphs for the six clustering sets from the remain-

ing 20% services in Alibaba traces as stated in Section 4.1,

and generate six Real-world benchmarks (named from Real-0

to Real-5). We implement the DGG’s and Real-world bench-

marks based on 𝜇Bench [10], which is an assistant bench-

mark generation tool that creates executable microservice

applications from input call graphs.

In terms of call graph loads, for each DGG’s benchmark

with 𝑛 call graphs, we utilize the query per minute of the top-

n accessed call graphs in the corresponding service clustering

set in the trace. Moreover, for each real-world benchmark,

we directly utilize its realistic query per minute in the trace.

We evaluate each benchmark for one hour with the trace

data and set the QoS of each benchmark to its 95%-ile latency

under no computing resource constraints. Table 5 shows the

hardware and software configurations.

6.2.3 Tail Latency and Resource Allocation. Figure 12 shows
the 95%-ile latencies of the six types of simulated benchmarks

generated by DGG and real-world benchmarks from traces

with the three strategies. We can observe that the 95%-ile

latency relationships among the three strategies on each

type of DGG’s benchmarks is similar to that on each type of

real-world benchmark. In detail, both FineGrained-Scale and

MAX-Scale ensure the QoS on DGG’s or real benchmarks,

whileMin-Scale violates the QoS by 2.7X and 2.5X on average

for DGG’s and real-world benchmarks, respectively.

Figure 12: The 95%-ile latency of three strategies on
DGG’s and real benchmarks normalized to the QoS.

Figure 13: The CPU usage of MAX-Scale and MIN-Scale
normalized to FineGrained-Scale on DGG’s and real
benchmarks, respectively.

Figure 13 also shows the total CPU core hour usage of the

six types of DGG’s benchmarks and real-world benchmarks

with the three strategies. We can observe that the resource

allocation relationships of the three strategies on DGG’s and

real-world benchmarks are also similar. For DGG’s bench-

marks, FineGrained-Scale has less resource usage than MAX-

Scale, with an average reduction of 24.2% and a maximum

reduction of 39.8%. For real-world benchmarks, FineGrained-

Scale reduces the resource allocation by 27.3% on average and

up to 44.8% compared to MAX-Scale. Moreover, the MIN-

Scale has the minimum resource allocation on no matter

DGG’s or real-world benchmarks, but its QoS is violated.

The above results prove that the benchmarks generated by

DGG can effectively reflect both the end-to-end performance

and the resource scaling efficiency of different resource man-

agement strategies in real-world applications.

6.2.4 Summary of Benefits for Using DGG. Since DGG’s

generated benchmarks can well reflect the performance and

resource efficiency of different resource management strate-

gies for real-world applications, we summarize the benefits

of using DGG on microservice resource scaling.

(1) Strategy Validation in Production. For the cloud,
directly validating the efficiency of different resource man-

agement strategies on a large-scale online application may

negatively impact on user experience and cost efficiency. In

such cases, DGG can be used to generate small-scale bench-

marks from online traces to explore the efficiency of various

strategies, allowing cloud providers to select the most effi-

cient one for production deployment.

(2) Microservice Scaling Studies for Research. Cur-
rently, the graph topology of benchmarks in academia is
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quite simple, such as DeathStarBench [12], 𝜇Suit [42], and

Online Boutique [13]. Using them to explore microservice re-

source management does not align with real-world scenarios.

Therefore, researchers can utilize DGG to construct bench-

marks from microservice traces for research, which better

aligns with the characteristics of production microservices.

7 Conclusion
This paper proposes DGG for generating service dependency

graphs of benchmarks that incorporate production-level fea-

tures. Specifically, DGG uses a data handler to construct pre-

cise call graphs from the production traces and merges them

into dependency graphs. It then clusters these dependency

graphs into different categories based on their topological

and invocation types. Based on the organized data, DGG uses

a graph generator to generate service dependency graphs

based on the random graph models that simulate real mi-

croservices invoking downstream microservices. Case stud-

ies show that DGG’s generated dependency graphs closely

resemble real traces. Moreover, for evaluating the same re-

source scaling strategy, DGG-generated benchmarks show

the resource efficiency increase is 24.2% on average while

real trace benchmarks show that value of 27.3%, proving that

DGG can reflect similar results in evaluating microservice

resource management strategies to real-world.
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