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Abstract
Stencil computation is one of the fundamental computational
patterns in scientific computing, commonly adopted in solv-
ing partial differential equations (PDEs) and a wide range of
application fields. However, due to the memory-bound na-
ture, it is challenging to achieve satisfactory performance on
the ARM many-core processors with complex computation
and memory hierarchies. In this study, we propose indepen-
dent instruction stream scheduling with the Serial-FMA to
Tree-Based Reduction (SFTBR) technique to decompose the
stencil computation into multiple independent instruction
streams for improved instruction-level parallelism. Further-
more, we propose a locality-aware block scheduling tech-
nique for locality-aware multi-level thread parallelism to
address the complexities of cache and memory hierarchies
on modern ARM many-core processors. Based on the above
techniques, we implement a domain-specific compiler, AOS-
tencil, to automatically generate optimized stencil codes on
ARM many-core processors with genetic-algorithm-driven
parameter tuning. Our evaluation results demonstrate that
AOStencil achieves up to 4.39× speedup over the state-of-
the-art domain-specific compilers on Kunpeng and Phytium
platforms.
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1 Introduction
Stencil computation is one of the fundamental computational
patterns in scientific computing [9], crucial for addressing
a broad spectrum of partial differential equations (PDEs)
that are adopted in various application domains, including
image processing, computational fluid dynamics, climate
modeling, and nanoscale science. Moreover, with the advent
of emerging deep learning techniques, stencil computation
has broadened its applicability beyond scientific fields to
widely deployed deep neural models such as convolutional
neural networks (CNNs). Specifically, stencil computation
updates a data grid by employing a predefined pattern of
adjacent values to compute new values across time or space
iteratively. Stencil computation often exhibits a relatively
low computational intensity, which is generally categorized
as memory-bounded [18, 29]. In practice, stencil computa-
tions often employ tiling techniques [2, 7, 13, 15] to enhance
its performance with improved data locality. Unfortunately,
the complexity of modern ARM many-core processors with
diverse microarchitecture designs and memory hierarchies
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poses significant challenges for optimizing stencil computa-
tions.

Instruction 

Stream A

Instruction 

Stream B

ldr1fetch to L1 Cache

Clock t1 Clock t2

ldr2fmla2 fmla2ldr2

fmla1ldr1

(a) Out-of-order execution

ldr1 fmla1

fmla2 ldr2

ldr3 fmla3

Instruction 

Stream A

Clock t1

Clock t3

fmla4ldr4

Clock t4

fmla4

Clock t2

ldr3

Instruction 

Stream B

Instruction 

Stream C

Instruction 

Stream D

(b) Dual-issue

Figure 1: Illustration of instruction-level parallelism
with multiple individual instruction streams.

Modern processors commonly adopt superscalar microar-
chitectures that support instruction-level parallelism such
as out-of-order execution (OoOE) and multi-issue, which can
simultaneously execute multiple data-independent instruc-
tions. For simplicity without losing generality, Figure 1a
demonstrates the enhancements achieved via OoOE with
two individual instruction streams. When Stream A requires
prefetching data from the Last Level Cache (LLC) or mem-
ory with high latency, the core can execute other streams
(Stream B) that are data-independent of the current instruc-
tion stream. This approach minimizes idle CPU cycles by en-
abling concurrent execution of individual instruction streams.
Meanwhile, modern processors can issue multiple instruc-
tions simultaneously within a single clock cycle (e.g., dual-
issue to issue two instructions), thus boosting performance.
As shown in Figure 1b, for dual-issue hardware, Streams A
and B simultaneously issue the ldr and fmla instructions at
clock 𝑡1, and similar dual-issue operations occur at clocks 𝑡3
and 𝑡4, which enhances the Instructions per Cycle (IPC) dur-
ing these specific cycles. Similarly, such a technique is effec-
tive only if there are multiple individual instruction streams
without data dependencies operating simultaneously. The
optimal number of multiple streams for exploiting multi-
issue depends crucially on the execution latency of specific
instructions such as ldr and fmla during stencil computa-
tion.
However, for ARM-based processors, the diversity in mi-

croarchitecture implementations presents a significant chal-
lenge in optimizing stencil computations via instruction-
level parallelism. For instance, the ARM Cortex-A78 microar-
chitecture, which adheres to the ARMv8-A standard, features
a 4-wide superscalar pipeline with 13 out-of-order execution
(OoOE) pipelines, enabling it to issue two SIMD instruc-
tions concurrently (dual-issue) [3]. In contrast, the Kunpeng
920 microarchitecture, also based on the ARMv8-A stan-
dard, boasts a 4-wide superscalar pipeline but with only 8
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Figure 2: Latency across NUMAnodes on different Arm
many-cores systems.

OoOE pipelines, yet it is capable of issuing up to four SIMD
instructions simultaneously [34]. Therefore, for the ARM
ecosystem, the processors even with the same ARM standard
differ in key specifications such as instruction latency, the
size of the re-reorder buffer, the number of pipelines in out-
of-order execution, and the number of dispatches supported
by multi-issue mechanisms. These architectural differences
necessitate distinct instruction scheduling strategies to ef-
fectively optimize stencil computations across various ARM
implementations, thereby complicating the development of
high-performance computing libraries for ARM platforms.
Unfortunately, previous stencil compilers [11, 18, 22, 36]

have predominantly focused on optimizations on individual
microarchitectures, often neglecting the impact of diverse
microarchitectures on the optimization strategies. Besides,
existing works also typically optimize stencils by unrolling
loops within a stencil pattern using a single instruction
stream with vectorization [24, 35], which highly depends
on general-purpose compilers for instruction scheduling.
Due to the limited hardware resources and lack of domain
knowledge, such an instruction stream can be excessively
long and even data-dependent which will harm the effective-
ness of instruction-level parallelism. Therefore, it is essential
to leverage the domain knowledge of stencil computation to
decompose specific stencil computation into multiple inde-
pendent instruction streams, which can further optimize the
instruction scheduling for ARM-based processors.
To address these challenges, we introduce independent

instruction stream scheduling with the Serial-FMA to Tree-
Based Reduction (SFTBR) method, which decomposes the
execution of stencil computations into multiple independent
instruction streams to leverage advanced instruction-level
parallelism. Notably, some fmla operations are divided into
vmul and vadd instructions. According to ARM program-
ming guide [3], a fmla instruction has a latency of 4 cycles,
whereas vmul and vadd together incur a total latency of 5
cycles. Typically, on most processors, fmla executes slightly
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faster than the combined vmul and vadd. However, AOS-
tencil can decompose certain fmla instructions to generate
nps independent instruction streams, thereby leveraging the
processor’s microarchitecture features such as OoOE and
multi-issue capabilities. Within a single instruction stream,
fmla operations execute sequentially with lower latencies.
Multiple instruction streams can overlap memory access
latency with fmla operations from other independent in-
struction streams, resulting in performance gains for stencil
programs that are typically memory-bound. By fine-tuning
the nps parameter, AOStencil can adapt to the hardware mi-
croarchitecture design, stencil access patterns, and system
memory access latency. Without the above observations,
general-purpose compilers such as GCC cannot accurately
predict whether the benefits of splitting fmla instructions
outweigh the costs, and therefore cannot perform such opti-
mizations.
In addition, we propose a locality-aware block schedul-

ing technique for locality-aware multi-level thread paral-
lelism to address the complexities of cache and memory
hierarchies in modern ARM many-core systems. Modern
ARM-based processors are trending towards many-core ar-
chitectures with complex cache and memory hierarchies.
To integrate numerous computing cores within a system,
these computing architectures often employ a cache hier-
archy and memory hierarchy to build multi-level memory
structures, typically including multiple levels of private and
shared caches (L1, L2, and L3), cache-coherent Non-Uniform
Memory Access (ccNUMA) nodes, and sockets. Such com-
plexity introduces diverged performance impacts onmemory
load latency, which is crucial for memory-bounded stencil
computations. For instance, Figure 2 illustrates the memory
latency for ARM many-core systems such as the Kunpeng
and Phytium platforms [12, 42], where the horizontal axis
represents the memory NUMA node, and the vertical axis
indicates the computation NUMA node. The heatmap re-
flects the normalized latency relative to the lowest observed
latency on each platform. The results indicate that the fastest
memory loads occur in local ccNUMA memory nodes, fol-
lowed by adjacent local ccNUMA nodes, other ccNUMA
nodes from the local socket, and finally ccNUMA nodes from
other sockets. In the Kunpeng system, the maximum discrep-
ancy of memory latency can reach nearly 3×, whereas, in
the Phytium system, it can achieve 6×. Therefore, to achieve
efficient stencil computation, it is essential to fully leverage
the multi-level cache and memory hierarchy. Locality-aware
block scheduling requires adopting the domain knowledge of
stencil computation partitioning and communication, as well
as an understanding of the system interconnect topology.
To accommodate diverse stencil patterns, we develop a

domain-specific compiler, AOStencil, to automatically gen-
erate optimized stencil codes for ARM many-core systems

from intuitive stencil descriptions. Specifically, the AOStencil
compiler consists of a micro-kernel schedule optimizer and
a block schedule optimizer enhanced by independent instruc-
tion stream scheduling and locality-aware block scheduling,
respectively. The micro-kernel schedule optimizer also em-
ploys a genetic algorithm (GA) to automatically fine-tune op-
timization parameters for single-thread performance, while
the block schedule optimizer maximizes multi-thread perfor-
mance with better data locality.

Specifically, this paper makes the following contributions:
• We propose independent instruction stream scheduling
with the Serial-FMA to Tree-Based Reduction (SFTBR)
method to decompose the execution of stencil compu-
tation into multiple independent instruction streams
for improved instruction-level parallelism.
• We propose locality-aware block scheduling for locality-
aware multi-level thread parallelism to address the
complexities of cache and memory hierarchies in mod-
ernARMmany-core systems, facilitating high-performant
stencil computation.
• Based on the above techniques, we develop a novel
domain-specific compiler, AOStencil, to automatically
generate optimized stencil codes for ARM many-core
systems with genetic algorithm-driven parameter tun-
ing. AOStencil adopts a micro-kernel schedule opti-
mizer and block schedule optimizer for the automatic
optimization of diverse stencil patterns.
• Our comprehensive evaluation results demonstrate
that the AOStencil achieves up to 4.39× speedup over
the state-of-the-art domain-specific compilers on ARM
many-core systems such as Kunpeng and Phytium.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the background of stencil computation and
ARM many-core systems. Section 3 offers a general design
overview and Section 4 dives into the detailed optimization
applied in the AOStencil. The evaluation results of AOSten-
cil are detailed in Section 5. We discuss the related work in
Section 6 and conclude in Section 7.

2 Background
2.1 Stencil Computation
Stencil computation involves updating the value at each
point on a structured grid based on a predefined stencil
pattern, known as a stencil, which incorporates the values
of neighboring points. This process involves both spatial
and temporal dimensions: the spatial dimension defines the
neighborhood of points (the stencil pattern), while the tem-
poral dimension refers to the iterative application of the
stencil over multiple time steps to simulate system evolution.
The shape and complexity of the stencil can vary depending
on the application, ranging from simple 5-point or 9-point
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stencils in 2D grids to more complex 27-point stencils in 3D
grids. These stencils can take forms such as star, box, or other
patterns, depending on which neighboring points influence
the computation. Stencils are typically memory-bound pro-
grams, meaning their performance is often constrained by
memory access speeds rather than computational complex-
ity. Due to the intensive memory access patterns, efficient
utilization of cache and memory bandwidth is critical for
optimizing stencil performance.

2.2 Instruction-level Parallelism
Instruction-level parallelism (ILP) inmodernmicro-architectures
is critical for optimizing performance. Both out-of-order ex-
ecution and multiple-issue mechanisms such as dual-issue
play pivotal roles in exploiting ILP by allowing multiple in-
structions to execute concurrently, thus enhancing through-
put and efficiency.
Out-of-order execution (OoOE), as demonstrated in Fig-

ure 1a, enables processors to dynamically reorder instruc-
tions to mitigate latency issues, such as long memory fetches.
In this stencil example, two independent instruction streams,
A and B, are managed such that delays in one stream (e.g., the
𝑙𝑑𝑟1 instruction in Stream A) do not stall overall execution.
By prioritizing instructions from Stream B while Stream A
is delayed, the processor reduces idle time and maintains
high utilization of its execution units. Once the delayed in-
struction (e.g., 𝑙𝑑𝑟1) is ready, Stream A resumes execution
seamlessly. This ability to handle independent streams out
of their original order is fundamental to modern processors,
allowing them to execute multiple instructions in parallel
and thus significantly boost performance.
In addition, multi-issue mechanisms, such as dual-issue

configurations, as demonstrated in Figure 1b, further en-
hance processor throughput by allowing the issuance of
two instructions per clock cycle. In the context of this sten-
cil example, a fused pair of instructions—such as ldr (load)
and fmla (fused multiply-add)—can be issued concurrently
across multiple independent streams (A, B, C, D). However,
multi-issue is subject to specific constraints, particularly
those related to the NEON unit. These constraints permit the
simultaneous dual issuance of a load/store or certain instruc-
tion types alongside a NEON data-processing instruction in
ARM architecture [4]. The use of multi-issue significantly im-
proves the instructions per cycle (IPC) metric by facilitating
the parallel execution of different instruction types across
multiple streams, thereby maximizing instruction-level par-
allelism.

The OoOE and multi-issue mechanisms together highlight
the substantial potential of ILP inmodernmicro-architectures.
These techniques work in tandem to reduce latency and en-
hance the utilization of execution units. However, achieving
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Figure 3: Hardware architectures of Kunpeng and
Phytium platforms.

optimal performance through ILP on diverse Arm hardware
requires adapting instruction scheduling strategies to ac-
count for variations in the number of OoOE pipelines and
multi-issue capabilities across different architectures.

2.3 Multi-level Thread Parallelism
The trend in modern processors towards increasing core
counts, while effectively managing cache and memory hi-
erarchies, has become a defining feature of contemporary
multi-core architectures. Notable examples include the AWS
Graviton4 (with up to 192 cores), Huawei Kunpeng 920 (up
to 256 cores), Nvidia Grace CPU Superchip (scaling to 288
cores), and the Phytium FT-2000, used in the Tianhe-3 super-
computer system (with up to 128 cores).

In this study, the Kunpeng platform and the Phytium plat-
form serve as the primary platforms for analyzingmulti-level
thread parallelism. The Kunpeng platform, utilizing Kunpeng
920 processors (Figure 3a), consists of two sockets, each con-
taining two ccNUMA nodes. These nodes are interconnected
via Huawei’s Cache-Coherent System (HCCS), which en-
sures efficient communication and data consistency across
nodes. Each ccNUMA node comprises six cluster modules
integrated into a single chiplet package, with each module
containing four independent compute cores. Every core is
equipped with a dedicated L2 cache, enabling fast, localized
data access and reducing latency for computing tasks.



Efficient Locality-aware Instruction Stream Scheduling for Stencil Computation on ARM Processors ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Similarly, the Phytium platform, powered by Phytium
S2500 many-core processors (also known as Matrix proces-
sors), integrates 128 compute cores operating at 2.0 GHz. As
depicted in Figure 3b, the system topology organizes these
cores into four Supernodes (SNs), interconnected through a
scalable on-chip communication network. Each Supernode is
divided into four panels, with each panel housing eight com-
pute cores. The cache architecture is hierarchical, with every
four cores sharing an L2 cache, and all eight cores within
a panel contributing to a shared L3 cache. Both the Kun-
peng and Phytium platforms exemplify the intricate cache
and memory hierarchies that are central to modern many-
core architectures. Multi-level thread parallelism is essential
for fully exploiting the potential of these architectures, par-
ticularly in data-intensive and highly parallel applications
such as stencil computations. Optimizing parallel execution
across multiple levels of caches, ccNUMA nodes, and sock-
ets is crucial to enhancing performance and scalability in
next-generation HPC systems.

3 Design Overview
The AOStencil compiler comprises two principal modules:
the frontend and the backend, as illustrated in the design
overview shown in Figure 4. The architecture design of the
AOStencil DSL compiler is inspired by Halide’s design philos-
ophy, which separates computation from scheduling during
optimization. In the AOStencil compiler, the connection be-
tween the frontend and backend is facilitated through a sten-
cil Intermediate Representation (IR) that encapsulates stencil
patterns. The backend is composed of several components,
including micro-kernel schedule optimizer, locality-aware
block schedule optimizer, and code generation.

3.1 Frontend
The AOStencil compiler processes a domain-specific lan-
guage (DSL) designed for defining stencil patterns and the
data properties of tensors used in computational tasks. The
DSL specifies the stencil kernel’s dimensions, offset indices
for memory access, and coefficients for stencil elements,
while also ensuring the integrity of the input tensor by defin-
ing its data type and shape. The compiler translates the DSL
into Stencil Intermediate Representation (IR), composed of
a sparse tensor storing the stencil pattern and associated
attribution data (such as input tensor details, halo length,
and bias). The sparse tensor encodes the offset values of co-
efficients, leaving non-used positions as zeros, as depicted
in Figure 4. This structured representation of the stencil al-
lows for feature extraction and subsequent optimizations,
improving computational efficiency in stencil operations.

3.2 Backend
The AOStencil compiler backend processes the Stencil IR
through micro-kernel and locality-aware block schedule op-
timizers to generate an optimized kernel, which is then con-
verted into a C function API. 1) Micro-kernel schedule op-
timizer enhances vector-folding, independent instruction
stream scheduling, tiling, and loop unrolling within the sten-
cil computations. The AOStencil compiler employs evolution-
ary algorithms to tune parameters such as the number of mul-
tiple streams, tiling size, and unrolling size. 2) Block schedule
optimizer uses stencil attribution to hardware-aware local-
ity memory optimization, incorporating the locality-aware
block scheduling and halo exchange specification. It statically
divides blocks for local storage and optimizes memory-IO
latency for inter-block communication. 3) Code generation
translates the optimized kernel into calls to pthread and lib-
numa libraries for parallelization and memory management
with generated standard C codes. The compiler leverages
Ahead-Of-Time (AOT) compilation for high-performance
stencils on ARM platforms.

4 Methodology and Implementations
TheAOStencil compiler incorporatesmulti-tiered end-to-end
optimizations to achieve high-performance stencil code on
large-scale multicore systems, primarily facilitated through
micro-kernel schedule and locality-aware block schedule
optimizers.

4.1 Micro-kernel Schedule Optimizer
At the core of stencil pattern optimization, micro-kernel
schedule optimizer enhancesmicro-kernel performance through
two key approaches, including independent instruction stream
scheduling and micro-kernel auto-tuning. First, it leverages
SIMD instruction capabilities by employing vector-folding
optimization techniques and the SFTBR method to exploit
instruction-level parallelism. The SFTBR method enables
parallelization of multiple instruction streams by taking ad-
vantage of ILP capabilities such as OoOE and multi-issue,
ultimately improvingmulti-stream processing efficiency. Sec-
ond, in the context of single-thread stencil computation,
micro-kernel schedule optimizer utilizes techniques such
as tiling and loop unrolling. To achieve optimal performance,
the micro-kernel schedule is further refined through the use
of a genetic algorithm (GA) to optimize key parameters, in-
cluding tile size, unroll size, and the number of streams in the
SFTBR method. Notably, to maximize throughput during the
parameter fine-tuning process for cache and memory hierar-
chy systems, the candidate stencil code, generated with the
candidate parameters for a specific locality block is tested
on an isolated hardware block, ensuring the use of an inde-
pendent cache system (including L1, L2, and L3 caches).
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Figure 4: The design overview of the AOStencil compiler.

Algorithm 1 The basic stencil computation
Require: 𝐴[𝐾] [𝑀] [𝑁 ] ⊲ Input 3D array
Ensure: 𝐵 [𝐾] [𝑀] [𝑁 ] ⊲ Output 3D array
1: for 𝑧 = 1 to 𝐾 − 1 do
2: for 𝑦 = 1 to𝑀 − 1 do
3: for 𝑥 = 1 to 𝑁 − 1 do
4: for element ∈ neighbors(𝐴[𝑧] [𝑦] [𝑥]) do
5: 𝐵 [𝑧] [𝑦] [𝑥]+ = coef × element
6: end for
7: end for
8: end for
9: end for

4.1.1 Independent Instruction Stream Scheduling. The ba-
sic stencil computation is outlined in Algorithm 1. Here,
K, M, and N denote the dimensions of the kernel computa-
tion shape, excluding any HALO or boundary regions. The
function neighbors is used to extract the requisite neigh-
bor elements from the input tensor A that are essential for
the specialized stencil kernel computation pattern. Notably,
the stencil kernel computation pattern is also encapsulated
within a for loop, which is targeted for independent instruc-
tion stream scheduling.

Algorithm 2 The SFTBR method
1: for 𝑥 = 1 to 𝑁 − 1 step vSize do
2: # Instruction-level parallelism
3: for 𝑖 = 0 to 𝑛𝑝𝑠 − 1 do
4: vElems𝑖 ⊆ neighbors(𝐴[𝑧] [𝑦] [𝑥])
5: 𝑣𝑅𝑒𝑔𝑠𝑖 ← vmul(coef, vElems𝑖 [0])
6: for 𝑗 = 1 to 𝑛 − 1 do
7: 𝑣𝑅𝑒𝑔𝑠𝑖 ← fma(coef, vElems𝑖 [ 𝑗], 𝑣𝑅𝑒𝑔𝑠𝑖 )
8: end for
9: end for
10: 𝑣𝑅𝑒𝑔← treeBasedReduction(𝑣𝑅𝑒𝑔𝑠)
11: vstr(&𝐵 [𝑦] [𝑥], 𝑣𝑅𝑒𝑔)
12: end for

Vector folding employs the Single Instruction, Multiple
Data (SIMD) technique to parallelize the nested loop as in-
dicated in line 3 of Algorithm 1, effectively folding the loop.
This approach enables the simultaneous computation of mul-
tiple data operations within an instruction cycle, significantly
augmenting the throughput of the stencil kernel computa-
tion. The vector folding method [35] substantially improves
the computational efficiency and performance of the stencil
kernel computation.

After implementing vector folding, there are two prevalent
methods for arranging vector instructions for a stencil point
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Figure 5: The illustration of three instruction stream
methods, including (a) serial FMA, (b) tree-based reduc-
tion, and (c) SFTBR.

computation at the innermost loop: serial-FMA and tree-
based reduction. The AOStencil compiler adapts the SFTBR
method, which integrates these two approaches, adjusting
the multi-stream settings via the parameter nps to adapt
different stencil patterns and hardware micro-architectures.
The serial-FMA method employs a sequence of Fused

Multiply-Accumulate (FMA) operations to compute stencil
neighbor values in sequential order, as shown in Figure 5a.
This ensures precise calculations with n-point stencils, re-
quiring only n multiplications and additions. Hardware-level
fusion of FMA operations reduces clock cycles compared to
separate instructions. However, this sequential nature limits
the use of the features of instruction-level parallelism, as
seen in the default instruction layout generated by the GCC
compiler optimization.
The tree-based reduction method uses an array of vector

registers to first perform a vector multiplication between
coefs and the neighbors in the stencil pattern, followed by a
binary tree reduction for summation, as shown in Figure 5b.
This advantage lies in its potential for OoOE and dual-issue.
Since the computations at each node of the tree do not depend
on the results of other nodes at the same level. However, this
approach requires 𝑛 multiplications and 2𝑛 − 2 additions,
utilizing a higher number of vector registers.

The Serial-FMA to tree-based reduction (SFTBR) method in-
tegrates the serial-FMA and tree-based reduction approaches,
as detailed in the pseudo-code 2. In the SFTBR optimization,
the parameter nps is used to determine the number of in-
struction streams in constructing the binary reduction tree.
As depicted in Figure 5c, SFTBR first performs multi-stream
FMA computations, followed by a tree-based reduction of
the multiple vector registers obtained in streams of FMA. By
combining the serial-FMA and tree-based reduction meth-
ods, SFTBR achieves multiple instruction streams that are
independent and capable of OoOE and dual-issue, adding
2𝑛𝑝𝑠 − 2 addition operations. When nps equals 1, the SFTBR

method defaults to serial-FMA. When nps equals the number
of points in the stencil pattern, it transforms into the tree-
based reduction method. During compilation, the AOStencil
compiler unrolls the innermost loop to enhance execution
efficiency in Algorithm 2.

4.1.2 Micro-kernel Auto-tuning. Kernel optimization for single-
thread stencil computations focuses on optimizing the com-
putation loops using techniques like tiling and unrolling.
Tiling divides the iteration space into smaller cache-friendly
blocks, enhancing data reuse across the x, y, and z dimen-
sions. Unrolling expands the loop body to reduce loop control
overhead, with the optimal factor dependent on the proces-
sor’s vector registers and stream depth. Parameters such as
tiling size, unrolling size, and the nps from the independent
instruction stream scheduling in micro-kernel optimization
greatly impact the performance of code generated by the
AOStencil compiler.

This targeted testing is essential, as the fine-tuning of
micro-kernel parameters is primarily dependent on the pro-
cessor’s cache. The specification of locality blocks ensures
that the optimization process is closely tailored to the charac-
teristics of the target hardware node, encompassing the indi-
vidual cache hierarchies, including L1, L2, and L3 caches. To
support this, the AOStencil compiler performs independent
evaluations of micro-kernel scheduling on each node with
its distinct cache configuration, thereby enabling parallel as-
sessments across the entire system. The subsequent section
provides a comprehensive explanation of the micro-kernel
scheduling auto-tuning process, as illustrated in Figure 4.
1) Locality Block Specification: The input size of the

stencil intermediate representation (IR) is partitioned to cor-
respond with the evaluation of a locality hardware node,
such as a ccNUMA node in a ccNUMA architecture, which
possesses exclusive multi-level cache storage. This partition-
ing ensures that the computation is aligned with the distinct
cache hierarchy of the node, facilitating optimized perfor-
mance by leveraging the node’s independent cache resources.
2) Micro-kernel Template: A micro-kernel template is

generated from the stencil IR NUMA block Specification to
provide a code template for subsequent micro-kernel sched-
ule code generation.
3) Initializing Micro-kernel Schedule: In a genetic al-

gorithm, a sufficiently uniform initial sample space provides
suitable potential for further iterative reductions, avoiding
premature convergence to local optima. The initial search
space for micro-kernel scheduling includes the parameters
nps, {x, y, z}_tiling_size, and {x, y, z}_unroll_size. The sam-
pling space for the initial tiling_size is set to {1, 2, 4, 8, . . . ,
1024}, unroll_size ranges from 0 to 3, and nps ranges from 1
to 9. When setting initial values, x_tiling_size is traversed
across all items from its sampling space, while the other
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parameters are randomly sampled within their respective
sampling spaces. Each x_tiling_size generates eight sets of
initial micro-kernel schedules. Since x_tiling_size is the in-
nermost blocking parameter of the array and has the greatest
impact on performance with numerous local optima, suffi-
cient and uniform samples are necessary to avoid getting
trapped in local optima.

4) Candidate Stencil Codes: Using the micro-kernel tem-
plate, the micro-kernel schedule is transformed into exe-
cutable code, generating compilable candidate stencil code.
These candidate stencil codes are then evaluated through real
execution. Simultaneous testing of candidate codes is facili-
tated by locality block specification and ccNUMA node pool-
ing, which optimizes stencil computations. The workload of
each individual ccNUMA node is isolated by partitioning the
stencil’s input tensor into subtensors. The process of testing
a candidate stencil code typically requires approximately 1
second for compilation and 5–15 seconds for execution. Each
tuning round takes roughly 20–40 seconds on the Phytium
platform and 100–180 seconds on the Kunpeng platform,
depending on factors such as stencil shape, hardware speci-
fications, and the number of ccNUMA nodes.
5) Performance Database: Across the entire system’s

multiple ccNUMA nodes, the Micro-kernel schedule opti-
mizer tests multiple candidate stencil codes simultaneously,
logging the performance outcomes of each micro-kernel
schedule round into a performance database.
6) GA-based Schedule Generator: This generator itera-

tively evolves the parameter population by selecting high-
performing parameters, performing crossover to amalgamate
attributes from parental parameters, and introducing ran-
dom mutations to foster diversity. These operations enable
the GA to efficiently explore the optimization space, iden-
tifying promising optimization parameter sets to combine
new potential Micro-kernel Schedules.

7) Potential Micro-kernel Schedules: This serves as the
next batch of test samples, initiating a new testing cycle.
8) Optimized Micro-kernel Schedule: When the Per-

formance Database fails to yield better-performing micro-
kernel schedules over several testing rounds, the Micro-
kernel schedule optimizer concludes, outputting the cur-
rently best-performing micro-kernel schedule.

4.2 Block Schedule Optimizer
The AOStencil compiler advances a locality-aware block
schedule optimizer based on the locality-aware multi-level
thread parallelism. During compilation, it performs locality-
aware optimization and HALO exchange specification. It
statically binds stencil tasks and the locality memory storage
of input and output tensors, along with HALO exchange
zones. Ultimately, this approach ensures that at runtime,

Table 1: Mapping from stencil loop to locality-aware
block scheduling

Thread level 2d stencil 3d stencil
Thread x loop x loop
NUMA Block y loop y loop
Socket Block y loop z loop
Socket Block cluster y loop z loop

stencil operates with multilevel parallelism across the cache
and memory hierarchy.

L1 L2 Cache
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Figure 6: The illustration of multi-level thread paral-
lelism in locality-aware block scheduling.

The multi-level thread parallelism in locality-aware block
scheduling is illustrated in Figure 6, where 𝑛 represents the
number of processors within a ccNUMA node,𝑚 denotes
the number of ccNUMA nodes within a socket, and 𝑘 indi-
cates the number of sockets within a server. This parallelism
is structured across four hierarchical levels: the first level
consists of a single thread, incorporating a processing core
along with local registers, and L1 and L2 caches. The second
level groups 𝑛 threads into a NUMA block, which, at the
hardware level, is integrated through the ccNUMA archi-
tecture to include an L3 cache and local NUMA memory.
The third level assembles𝑚 thread blocks to form a socket
block within a server’s socket. The fourth and final level
clusters 𝑘 thread block clusters to form a socket block clus-
ter, encompassing all sockets on the server. As demonstrated
in Figure 2, the locality-aware block scheduling proposed
in this paper aligns with the memory hierarchy structure
observed in multi-core architectures. It is noted that with
each increasing level, there is a corresponding increase in
memory-IO latency, reflecting the complex interdependen-
cies and latency penalties associated with data across the
hierarchical levels of modern server architectures.

The locality-aware block scheduling is designed to achieve
fine-grained parallelism in stencil in multi-core architectures.
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It uses threads as the fundamental units, partitioning the
storage input tensor of stencil into local NUMA memory for
each thread. The mapping from the 2D/3D stencil loop to
the locality-aware block scheduling is illustrated in Table 1.
When mapping the stencil block to hardware units, each
thread maximizes the use of the nearest memory and ar-
ranges adjacent blocks that require communication within
a local hardware unit, such as within a ccNUMA node or
socket. For instance, in the case of three-dimensional stencil
parallelism:

• At the socket block cluster level, the 𝑧 for loop of the
stencil IR is divided among 𝑘 socket blocks for parallel
processing.
• At the socket block level, the 𝑧 for loop is further di-
vided among𝑚 NUMA blocks.
• At the NUMA block level, the 𝑦 for loop of the stencil
IR is divided among 𝑛 threads for parallel computation.
• At the thread level, the 𝑥 for loop of the stencil IR is
executing within a thread.

The AOStencil compiler performs static partitioning of
the stencil block during compile time. The subsequent gen-
eration of specific C code involves lowering each thread’s
thread_function to leverage the lightweight pthread library
for thread creation and management. To improve thread ex-
ecution performance and minimize conditional branching,
the HALO exchange specification preprocesses and indexes
the computation regions for each thread, embedding static
positions within the thread-partitioned block. This specifica-
tion encompasses three key components: 1) positioning the
stencil block, 2) managing the movement of the input ten-
sor’s global storage position—prior to the stencil execution,
data is copied into the ccNUMA local storage of the thread
block, and after computation, it is copied back to global stor-
age, and 3) handling the HALO region following each stencil
timestep.
The locality-aware block scheduling effectively exploits

the memory hierarchy inherent in modern ccNUMA and
socket architectures. This optimization strategy primarily
enhances the speed of memory access by aligning memory
demands with the hierarchical memory layout. Secondly, as
a thread block within a shared L3 cache accesses adjacent
tensor blocks of the stencil computation by the L3 cache, this
methodology improves the utilization of the cache. Finally,
this approach mitigates cross-socket NUMA access on the
server, which in turn alleviates pressure on the PCIe bus
and the cache coherence system. This reduction in data ex-
change across L3 caches, NUMA nodes, and sockets leads to
decreased latency and improved overall system performance.

Table 2: The hardware and software configuration

Platform Kunpeng Phytium
Processor Kunpeng-920 Phytium-S2500
Sockets 2 2
NUMA nodes 4 16
Cores 96 128
Libnuma 1.0.0 1.0.0
GCC 8.4.0 9.4.0
OpenMP 201511 201511
Pthread 2.31 2.28
MPI mpich-4.2.0 mpich-4.2.0
Clang 16.0.6 16.0.6

Table 3: Stencil pattern benchmarks

Stencil
patterns 2d9pt_star 2d9pt_box 3d7pt_star 3d27pt_box

Read(Byte) 72 72 56 216
Write(Byte) 8 8 8 8
Min-memory
IO(Byte) 16 16 16 16

Float Ops 17 17 13 53
Operation
Intensity
(Flops/Byte)

1.06 1.06 0.81 3.31

TimeDep. 2 2 2 2

5 Evaluation
5.1 Experimental Setup
This study utilizes two experimental platforms: the Phytium
cluster with Phytium-S2500 processors (Phytium platform)
and the Taishan v110 server with Huawei Kunpeng-920 pro-
cessors (Kunpeng platform), which are the primary ARM
platforms used in the latest supercomputing systems. Table 2
details the software and hardware configurations, while Fig-
ures 3a and 3b depict the system architectures. The GCC
compiler is used by AOStencil. We evaluate stencil bench-
marks with varying shapes, input sizes, and computational
intensities, as shown in Table 3, to represent diverse scientific
applications. ’Read’ and ’Write’ refer to memory operations
for a single stencil element (for example, using the double
type in Table 3). Minimummemory IO reflects optimal multi-
level cache use, and Operation Intensity (Table 3, Figure 9) is
the ratio of floating-point operations to minimum memory
IO. In our experiments, the stencil time iterations are set
to 100 steps by default. The experimental evaluation of the
AOStencil compiler encompasses five aspects:



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Shanghao Liu, Hailong Yang, et al.

• Performance Comparison: We compare the perfor-
mance of the AOStencil compiler with themanually op-
timized stencil codes and state-of-the-art stencil com-
pilers, such as MSC [18] and Halide [11, 22].
• Ablation Study: We conduct an ablation study focus-
ing on the methods of the AOStencil.
• Roofline Analysis:We perform a roofline analysis to
evaluate the computational efficiency of the AOStencil
compiler.
• Scalability Analysis: We analyze the scalability of
the AOStencil compiler across different problem sizes
and hardware configurations.
• Auto-tuning Cost Analysis:We assess the cost asso-
ciated with the auto-tuning analysis performed by the
AOStencil compiler.

5.2 Overall Performance
As illustrated in Figure 7, the experiments encompass a com-
prehensive comparison using two types of floating-point
precision. The x-axis of Figure 7 represents the performance
platforms and input tensor sizes. On each subplot, perfor-
mance data for the Kunpeng platform appear on the left,
while data for the Phytium platform are shown on the right.
The study employs two and three-dimensional stencils with
input tensor sizes of (81922), (163842), (245762) for 2D, and
(2562), (5122), (7682) for 3D. The y-axis indicates the perfor-
mance of stencil codes generated by the manual optimization
and the compilers.

Specifically, the Manual Optimization indicates manually
optimized stencil codes with tiling, unrolling, and vector-
ization techniques from domain expert. The MSC compiler,
lacking automatic parameter tuning capabilities and sub-
ject to specific grid size constraints for each MPI process,
utilizes manually tuned parameters based on expert expe-
rience, as indicated in the performance data labeled MSC.
MPI+OpenMP parameters are optimally set according to the
hardware system specifications of each platform to ensure
that each MPI process executes within a ccNUMA node. In
contrast, the Halide compiler, which features automatic tun-
ing capabilities [1, 21], provides performance data under the
label Halide-auto based on the recommended automatic tun-
ing framework. Despite Halide’s automatic tuning feature,
its performance does not always achieve optimality across
all benchmarks. Therefore, for a comprehensive experimen-
tal approach, manually tuned performance data from expert
experience, labeled Halide-Manual, are also included. The
AOStencil data derive from performance measurements of
stencil code automatically optimized by the AOStencil com-
piler. From Figure 7, it is evident that the AOStencil compiler
demonstrates a better performance over both the MSC and
Halide compilers, which is manifest in three main areas:

1) Cross-Platform Capability: The AOStencil compiler
demonstrates strong cross-platform performance by opti-
mizing for both microarchitecture and multi-core systems,
surpassing the Halide and MSC compilers. Unlike Halide,
AOStencil focuses on optimizing stencil computations at
both the microarchitecture and multi-processor intercon-
nect layers (e.g., ccNUMA, sockets). Specifically, AOStencil
implements independent instruction stream scheduling opti-
mizations to overlap memory latency and computations with
out-of-order execution of multiple pipelines in modern ARM
microarchitectures, which Halide ignores. While Halide per-
forms well on the Kunpeng platform, it is less suited to the
Phytium. The MSC compiler generally performs better on
Phytium than Kunpeng.
2) Performance on Multiple Stencil Patterns: The

AOStencil compiler consistently outperforms Halide and
MSC in benchmarks across four stencil patterns, thanks
to its effective micro-kernel schedule optimization. Addi-
tionally, AOStencil addresses high memory access latencies
on interconnect architectures through locality-aware block
scheduling, as demonstrated in the roofline experiments in
Figure 9. MSC performs better in 2D but struggles with 3D
stencil patterns.
3) Performance Stability Across Input Tensor Sizes:

The AOStencil compiler maintains stable performance across
various tensor sizes, unlike MSC and Halide, which degrade
on smaller inputs. This stability reflects the success of AOS-
tencil’s auto-tuning and locality-aware block schedule opti-
mization, effectively mitigating the potential high latency of
memory accesses that Halide overlooks.

In summary, in this comparative experiment, the AOSten-
cil compiler provides competitive performance relative to the
other two stencil DSL compilers. On the Kunpeng platform,
the AOStencil compiler achieves an average performance
improvement of 0.86 times over the Halide compiler and 6.84
times over the MSC compiler. On the Phytium platform, the
AOStencil compiler achieves an average improvement of 6.73
times over the Halide compiler and 4.39 times over the MSC
compiler.

5.3 Ablation Study
To further demonstrate the efficacy of the primary method
discussed in this article, we conducted an ablation study.
The experimental design included four sets of optimization
strategies: 1) baseline: Utilized OpenMP parallelism and
was compiled with GCC using the "-O3" optimization flag. 2)
+block schedule: To enhance the stability of the ablation
experiment and mitigate errors caused by the randomness
of memory allocation, a stencil with a locality-aware block
scheduling approach was implemented initially. 3) +SFTBR:
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Figure 7: Overall performance of optimized stencil codes on Kunpeng and Phytium processors.

Optimized stencil computation using a micro-kernel sched-
ule that incorporates only the SFTBR method, in conjunc-
tion with the block schedule. 4) +micro-kernel schedule:
Combined the micro-kernel schedule with all optimization
techniques, including unrolling, tiling, and SFTBR, along-
side the block schedule, as implemented by the AOstencil
compiler. The ablation study was performed using input ten-
sor sizes of 163842 for 2D stencils and 5123 for 3D stencils,
employing both single-precision (f32) and double-precision
(f64) floating-point formats across two different platforms.

The results of this ablation study are depicted in Figure 8,
where each subplot corresponds to the platforms. In these
figures, the x-axis represents a test of one stencil pattern at
a specific precision, while the y-axis denotes flops perfor-
mance. The selected parameter nps of the SFTBR method is
indicated at the top of each data bar. From the results, it is
evident that both the micro-kernel schedule and the locality-
aware block schedule consistently enhanced performance
across the board. Specifically, by the SFTBR method, there
was an average performance increase of 16% on the Kunpeng
platform and 10% on the Phytium platform. In most cases, the
selected parameter nps of the SFTBRmethod was bigger than
one, suggesting that increasing the number of instruction
streams to a suitable value can effectively boost the com-
putational performance of stencils by increasing ILP. The
charts also reveal that the performance gains from employ-
ing both the micro-kernel schedule and the locality-aware

block schedule were approximately 1.92x and 3.3x on the
Kunpeng and Phytium platforms, respectively.

5.4 Roofline Analysis
To elucidate the performance of the stencil code produced
by the AOStencil compiler, we conducted a roofline model
analysis on both the Phytium and Kunpeng platforms. This
analysis performance across both f32 and f64 precision. The
roofline model offers insights into the computational effi-
ciency and memory bandwidth constraints of the AOStencil-
generated code, facilitating the identification of performance
bottlenecks and potential optimization avenues. Figures 9a
and 9b depict the roofline models for the Kunpeng platform
in FP32 and FP64 precision, respectively. Each roofline graph
includes two memory bounds: one for the global memory of
the hardware system and another for local NUMA memory
utilization. Global memory refers to the memory directly
allocated to each computing core by the hardware system,
irrespective of the NUMA node, while local NUMA memory
pertains to memory allocated by computing cores within
their respective local NUMA nodes, as detailed in Figure 6.
Analyses from Figures 9a and 9b reveal that the memory
bound from global memory is respectively 45% and 36% of
the memory bound from local NUMA memory on the Kun-
peng and Phytium platforms. These findings underscore the
significant performance improvements that can be achieved
by effectively utilizing multi-level memory in a multi-core
architecture for memory-bound programs.
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Figure 8: Performance ablation study of the proposed
optimization techniques.

As depicted in Figures 9a and 9b, on both the Kunpeng
and Phytium platforms, stencil patterns such as 2d9pt_star,
2d9pt_box, and 3d7pt_star have exceeded the upper bounds
of the global memory. This demonstrates the effective utiliza-
tion of multi-core architectures by the AOStencil compiler’s
locality-aware block schedule optimization, significantly en-
hancing the performance of stencil on these architectures.
For the 3d27pt_box, the AOStencil compiler also showcased
commendable performance on the higher peak floating-point
capable Phytium platform, while further improvements are
awaited on the Kunpeng platform.

5.5 Scalability
This study designed scalability experiments to verify the
multicore scalability of the AOStencil compiler, conducted
on the Phytium platform, with input tensor sizes of 163842
for 2D stencil and 5123 for 3D stencil with f32 precision, en-
compassing four groups of stencil patterns. As illustrated in
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Figure 9: Roofline analysis on (a) Kunpeng and (b)
Phytium platforms.
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Figure 10: Scalability analysis of different stencils.

Figure 10, the x-axis represents the number of cores utilized
in the experiment, incrementally increased in steps corre-
sponding to the processor core count per ccNUMA node.
All stencil pattern benchmarks demonstrated linear speedup
on the Phytium platform as the number of cores increased.
Notably, when scaled to the maximum number of cores, the
AOStencil achieved an average speedup of 13 times com-
pared to its performance at the minimum number of cores.
These scalability experiments substantiate the AOStencil
compiler’s capability to generate stencil code that exhibits
scalability.

5.6 Auto-tuning Cost Analysis
Most of the execution time of the AOStencil compiler is
spent on micro-kernel fine-tuning. Figure 11 illustrates the
auto-tuning cost for each micro-kernel on the Kunpeng and
Phytium platforms with input tensor sizes of 163842 for 2D
stencil and 5123 for 3D stencil. The names of each stencil
case are shown on the right side of the figure, encompassing
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Figure 11: The performance (speedup to the first itera-
tion) of each kernel over the auto-tuning.

both f32 and f64 precisions. As shown in Figure 11, the auto-
tuning costs reveal that the evolutionary search algorithm
employed during the auto-tuning phase utilizes an efficient
initial search space configuration. As a result, the speedup
in the first iteration is moderate, averaging approximately
7% on the Kunpeng platform and 13% on the Phytium plat-
form, respectively. The auto-tuning method in AOStencil can
achieve 95% of its best performance on average after only
two tuning iterations. The AOStencil utilizes independent
ccNUMA nodes for parallel execution, which significantly
reduces the time required for fine-tuning. On the Kunpeng
platform, tuning is completed in less than 500 seconds for
all tests. On the Phytium platform, all stencil operators were
tuned within 500 seconds, with most completing in under 200
seconds. These results demonstrate the efficiency of the AOS-
tencil compiler’s auto-tuning process, which significantly
reduces the time required for fine-tuning.

6 Related Work
In previous studies focused on general stencil optimization
techniques, the approaches primarily fall into several cate-
gories: utilizing instruction-level parallelism through SIMD
vectorization [5, 13, 35, 40], enhancing cache efficiency with
various tiling strategies [6, 30], parallelism [7], and reducing
data exchange overhead in parallel implementations [32].

Given that stencils are inherently memory-bound with fa-
vorable memory locality, tiling techniques have been ex-
tensively explored in this context, including various tiling
shapes such as conventional rectangular tiling [17], tessellat-
ing tiling [38], and diamond tiling [7]. Some studies [26, 39]
have implemented two-level parallelism usingMPI+OpenMP
to accommodate multicore NUMA architectures. The work
of Rawat [24] presents a statement reordering framework
that models stencil computations as DAG of trees to optimize
register usage on GPUs by minimizing register pressure with
the limited number of registers.

To address the challenges posed by diverse stencil patterns
and complex hardware environments, several compilers and
code generators that take Domain Specific Languages (DSLs)
describing stencil patterns as input have been proposed. The
YASK compiler [36] employs vector folding to vectorize a
loop layer, achieving high-throughput stencil. The Open-
Earth compiler [16] utilizes Multi-Level Intermediate Rep-
resentation (MLIR) for efficient code generation of stencil
DSLs on GPUs. The Artemis compiler [25] focuses on graph
optimization problems for complex stencils. The MSC com-
piler [18] is designed for large-scale stencils on many-core
systems such as Sunway and Matrix, integrating loop tiling,
loop reordering, and cache-IO optimization methods. The
MSC compiler demonstrates superior performance compared
to the Patus [8] and Physis [20] compilers on CPUs. Addi-
tionally, the Halide compiler [22] illustrates the advantage
of decoupling computation from scheduling, enabling auto-
matic optimizations that often outperform manually-tuned
implementations.
However, the fragmented ARM ecosystem poses perfor-

mance challenges for cross-microarchitecture adaptation. Al-
though both Kunpeng and Phytium architectures are based
on ARMv8-A, they differ in key specifications such as in-
struction latency, the size of the reorder buffer, the num-
ber of pipelines in out-of-order execution, and the number
of dispatches supported by multi-issue mechanisms [3, 34].
These factors significantly impact the optimal instruction
scheduling, thereby complicating the development of high-
performance computing libraries for ARM platforms. Pre-
vious stencil compilers, including YASK, MSC, and Halide,
have predominantly focused on optimizations on individual
microarchitectures, often neglecting the influence of diverse
microarchitectural implementations on the effectiveness of
optimization methodologies. In contrast, the SFTBR strategy
introduces a multi-streams instruction optimization model
that uses the nps parameter to optimize various stencil op-
erators across different microarchitecture implementations.
Furthermore, no multi-level threading models for locality-
aware have been proposed to adapt to the emerging large-
scale many-core under memory hierarchy architectures with
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multi-ccNUMA and multi-socket. The AOStencil compiler in-
troduced in this paper fills these research gaps and leverages
these optimizations, which achieves substantial performance
improvements on two experimental platforms compared to
previous compilers.

7 Conclusion
In conclusion, this study has demonstrated the critical impor-
tance of optimizing both instruction-level parallelism and
multi-level thread parallelism strategies in stencil compu-
tations for modern many-core architectures. By leveraging
the Serial-FMA to Tree-Based Reduction (SFTBR) method
and implementing a locality-aware block scheduling, this re-
search has effectively addressed the challenges posed by
complex cache and memory hierarchies and memory-bound
workloads. The AOStencil compiler, which integrates both
the optimizations proposed in this paper and conventional
optimization techniques, has demonstrated significant per-
formance improvements. These include speedups of up to
0.86x and 4.39x on platforms such as Kunpeng and Phytium
with other stencil DSL compilers. These findings underscore
the necessity of co-optimizing computational and memory
access strategies to fully exploit the potential of many-core
systems. The demonstrated improvements affirm that multi-
level thread parallelism, alongside instruction-level optimiza-
tions, is a key part of advancing stencil computation perfor-
mance in future HPC systems.
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