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Abstract
Power and energy efficiency are increasingly important chal-
lenges within HPC. However, it is still important to achieve
these goals while maintaining desired/high application per-
formance. Balancing these goals involves the challenge of
precise application characterization. For successful user adop-
tion, this must avoid modifying the application and/or extra-
neous application profiling, and also be portable to different
processors across processor generations and vendors.

We propose EVeREST-C to solve these challenges. Everest
targets the finer-grained individual application functions for
exploiting power/energy saving opportunities via Dynamic
Voltage Frequency Scaling (DVFS) in both the core and the
uncore, without application-specific knowledge. Since Ever-
est relies on a single standard and accurate performance
event, IPS (instructions per second), for its characterization
rather than on the (many) performance counters that can dif-
fer across platforms, it is portable across processors. Finally,
the fine-grained approach enables Everest to additionally
save power/energy for select communication (MPI) phases,
where appropriate phases are chosen based on both their
length and position in the application with regards to the
memory/compute boundedness of surrounding user routines.
We evaluate Everest using SPEC CPU 2017 and various MPI
applications, on Intel and AMD platforms. We find that Ever-
est saves on average 11% more energy for SPEC compared
to the baseline and 8% more energy on MPI applications
compared to a state-of-the-art solution.
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1 Introduction
Concern over power and energy efficiency in the high perfor-
mance computing (HPC) industry continues to grow, espe-
cially as we enter the post-exascale era. This interest has been
exacerbated by rising energy costs combined with increasing
power requirements as well as by environmental sustainabil-
ity goals such as reduced carbon emissions [48, 51]. However,
these concerns often conflict with the ever-increasing desire
for more performance, leading to contrasting demands for
hardware and software to manage.

Dynamic Voltage Frequency Scaling (DVFS) lends itself as
an effective mechanism for reducing dynamic power, which
is proportional to 𝐶𝑉 2 𝑓 , demonstrating a cubic relationship
when both voltage and frequency decrease. DVFS is thus
most effective when performance loss is minimal, such as
lowering core clock during memory bound [15, 20, 23, 47, 54]
and communication bound [3, 5, 45, 52] phases or lowering
uncore clock during compute bound [17] phases.
Although DVFS has been long around, the industry still

lacks a practical and useful tool that effectively and automat-
ically manages clocks at application runtime for power and
energy savings while ensuring desired performance. This is
because of various challenges:
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Adapting to program behavior.Most applications are
neither fully compute bound nor memory bound, i.e., ap-
plications usually have phases with different behavior. For
example, HPC applications often model different sciences in
succession. Thus, a natural method for separating phases is
at the communication call granularity [7, 22, 45], which dou-
bly benefits from the ability to intercept standardized com-
munication (MPI) calls at runtime. However, this approach
misses phases that occur in-between communication calls,
which can lead to lost performance and/or overprovisioned
power. Other works avoid this pitfall by separating phases
at the function or loop granularity [1, 11, 14, 42, 55], but this
comes at the cost of extra application profiling efforts such
as through offline analysis or code instrumentation through
compiler support [55] or manual annotations [11].

On the other hand, many approaches opt for application-
oblivious profiling, where the application is sampled at a
fixed instruction or time interval [15, 17, 20, 23]. While this
removes dependence on extraneous application profiling and
the granularity is only limited by overhead and hardware
capabilities, the chosenmetric(s) to sample become especially
critical. This is because these approaches rely on a change in
the measured values to indicate a phase change. As a result,
most of these approaches measure a combination of counters
which indicate compute activity and memory activity. This
is problematic for reasons explained next.
Performance counters and their problems. Prior art

proposes the use of various combinations of hardware per-
formance counters for application characterization and/or
phase detection [4, 13, 25, 49, 54]. However, the accuracy
of these approaches varies depending on how the chosen
counters detect the level of overlap between memory ac-
cesses and computation [40]. Furthermore, both the events
collected and the accuracy of performance counters varies
widely across processor vendors (and even processors of the
same vendor) as reported previously [35, 36, 53]. As a result,
a single set of performance counters identified through rig-
orous training/calibration for a single processor will likely
fail to work for another processor or vendor.
Handling communication for parallel applications.

While communication phases where communicating pro-
cesses often ‘wait’ to send/receive data offer a significant
additional power saving opportunity especially for HPC, the
variety of communication calls (such as point to point vs.
collective communication) combined with the varied distri-
bution of payload size and time spent in those calls makes
it difficult to extract savings. For instance, if core clock is
lowered during a short ‘wait’ call that appears in a compute
bound phase of the application, then application performance
(and energy efficiency) could take a severe hit.

We propose EVeREST-C, a lightweight, effective, and versa-
tile tool that utilizes DVFS to automatically (without user in-
tervention) and dynamically characterize application phases
and adjust clocks to save power and energy for CPUs. Specif-
ically, Everest balances the tradeoff between adapting to
program behavior and portability by utilizing a sampling
approach for application characterization while separating
phases at the function granularity. This enables Everest to
rely on aminimal set of performance counters, measuring IPS
(instructions per second) at two different CPU frequencies
to determine memory and compute boundedness for a phase.
Everest then determines the ideal frequency (both core as
well as uncore) to run each phase at, to maximize power
savings while ensuring a specified performance threshold.
Additionally, Everest identifies MPI calls that commonly con-
tribute to slack time and achieve important energy savings
by selectively lowering clocks depending on slack duration.
Everest addresses the aforementioned three challenges

through the following contributions:

• Everest is effective in maximizing power saving oppor-
tunities within applications by adapting to the finer-
grained individual application functions as opposed
to the (much) coarser communication calls. Everest
achieves this dynamically, without application-specific
knowledge (e.g., through user intervention, extraneous
application profiling, compiler support).

• Everest is versatile as it avoids the common problems
associated with performance counters across proces-
sors. This is achieved by relying only on a single default
(i.e., fixed) performance event, retired instructions, for
the purpose of application characterization. This event
is both standard and accurate across all processors.

• Everest effectively exploits additional opportunities to
save power in communication phases. Everest is selec-
tive in choosing power saving opportunities to avoid
hurting performance by accounting for both the time
spent in communication and the nature (compute/mem-
ory boundedness) of the surrounding user routines.

• We implement and evaluate our approach on the lat-
est generation Intel and AMD server processors using
the SPEC CPU 2017 benchmark suite and various MPI
applications from the CORAL-2/ECP suites in single-
node and multi-node runs. Everest achieves an average
11% more energy savings on SPEC CPU 2017 applica-
tions compared to the baseline and 8% more energy
savings on MPI applications compared to a state-of-
the-art power management solution.

2 Related Work
With thewidespread adoption of DVFS, there exists extensive
literature exploiting the power-peformance tradeoff from
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DVFS when there is minimal performance loss, especially
within HPC. These works target specific opportunities and
can be broadly categorized into approaches which rely pri-
marily on software or hardware to identify and react to pro-
gram phases.We describe the limitations of these approaches,
with concrete examples in Section 3.

Software approaches.Many works make use of the natu-
ral program phases present in HPC applications, which arise
due to the nature of parallel (MPI) communication and syn-
chronization [3, 6, 7, 14, 22, 45, 52]. For determining memory
and compute boundedness, strategies which solely rely on
communication calls to delineate phases [7, 22] miss phases
that occur in-between these calls. Some approaches mitigate
this by additionally accounting for load imbalance when
determining the appropriate DVFS setting, and only slow
ranks which are not on the critical path utilizing per-core
DVFS [3, 45]. Other strategies only target the communica-
tion calls themselves [6, 52], lowering frequency as long as
sufficient (slack) time is spent within the call. While this can
result in significant savings, these works do not consider the
surrounding compute/memory bound user routines; to our
knowledge, Everest is the first of its kind to do so.

A more general and finer-grained approach is to consider
program phases at the function or loop level [1, 14, 42, 55].
Freeh et al. [14] identify phases through a combination of
a program trace of MPI calls and loop nests and the mea-
sured operations per miss. Acun et al. [1] in particular make
use of per-core DVFS to account for overlapping kernels and
dedicated I/O or communication threads common in HPC ap-
plications. However, while these approaches are highly accu-
rate in adapting to phase behavior, they are either restricted
to using a specific programming framework/compiler [1, 55]
or require multiple a priori application runs to identify the
optimal frequency for minimizing energy [14, 42].
Hardware approaches. Without knowledge of the un-

derlying application, these approaches detect phase changes
by measuring some combination of hardware counters. Early
works explored using offline analysis (i.e., not done at run-
time) to determine which set of performance counters to
best use for power and performance estimation. Weissel and
Bellosa [54] and Snowdon et al. [49] both use microbench-
marks to evaluate the correlation of different events with
performance and energy consumption, and subsequently use
those events to determine the ideal frequency at run time. Al-
though these approaches save significant energy especially
from memory-bound applications, they assume an accurate
system characterization that is not prone to training error,
which requires a comprehensive selection of benchmarks.

Other approaches operate completely at run time. Most of
these strategies rely on a detailed set of performance coun-
ters measuring both compute and memory [15, 23, 26, 38, 44],
limiting their portability due to the difference in accuracy and

availability of performance counters across platforms. For
instance, Ge et al. [15] achieve up to 20% energy savings with
user-defined performance limits, but even admit themselves
that the chosen performance events (L1 D-cache accesses,
L2 D-cache accesses, memory data accesses) were chosen
for their specific processors and may require adjustment for
other architectures. Similarly, Uncore Power Scavenger [17]
detects phase changes using DRAM power and instructions
per cycle (IPC); DRAM power reporting is currently limited
to Intel platforms. Hsu and Feng [20] propose an algorithm
using only IPS to measure performance impact from fre-
quency changes, but without accounting for phases. Everest
avoids these hardware portability issues by relying on only
IPS, while still detecting program phases fully at runtime.
Limitations. Each approach makes individual contribu-

tions towards Everest’s three proposed contributions: adapt-
ing to application characteristics (e.g., memory-boundedness)
at a fine granularity (effective), runtime characterization
avoiding performance counter limitations and user inter-
vention (versatile), and exploiting additional opportunities
in communication phases and the uncore (flexible). Everest
fully addresses each challenge, consolidating them all into
a practical and useful tool. We categorize the most notable
prior works in Table 1.

Table 1: Prior Works
Citation Effective Versatile Flexible

Ge et al. [15] (CPU MISER) ✓ ✗ ✗

Isci et al. [23] (GPHT) ✓ ✗ ✗

Acun et al. [1] (Charm++ module) ✓ ✗ ✓

Hsu and Feng [20] (𝛽-adaptation) ✗ ✓ ✗

Corbalan et al. [7] (EAR) ✓ ✗ ✓

Rountree et al. [45] (Adagio) ✓ ✓ ✓

Venkatesh et al. [52] (EAM) ✗ ✗ ✓

Gholkar et al. [17] (UPS) ✗ ✗ ✓

Only Adagio [45] also employs effectiveness (adapts to ap-
plications at MPI call granularity), versatility (only measures
instructions per second), and flexibility (also targets commu-
nication phases). However, its effectiveness and flexibility
are limited; Adagio does not account for phases in-between
MPI calls (like EAR [7]), nor does it consider the uncore.
More importantly, the goals of Adagio and Everest are

very different. Everest explicitly targets energy-saving op-
portunities in both load-balanced and load-imbalanced ap-
plications, while Adagio implicitly exploits opportunities in
load-imbalanced applications. Specifically, Adagio’s objec-
tive is to slow down processors that are not on the critical
path. On the other hand, Everest handles computation and
communication phases more broadly, calculating compute-
boundedness to determine the frequency scaling factor (core
and uncore) to meet a given performance threshold.
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In summary, no other proposed DVFS-based runtime com-
bines effectiveness, versatility, and flexibility to achieve the
same goals as Everest. Additionally, Everest uniquely con-
siders the surrounding compute/memory bound computa-
tion phases when determining communication phase fre-
quency, ensuring the best outcome for performance and
energy-efficiency for the variety of communication phases
present in HPC applications.

Furthermore, in practice, modern systems have not adopted
any above methods of application characterization for saving
power/energy; the Linux ondemand governor for instance
uses the simplest characterization, decreasing frequency
when CPU utilization is low (i.e., fully idle), but otherwise
running at the highest clock. To our knowledge, only EAR
[7] is employed at a Top500 system.

Other Power Management Techniques. Other mecha-
nisms for saving power (and energy) present an opportunity
to extend our approach. Greater potential power savings
can be achieved by incorporating memory DVFS [8] and
properties of asymmetric multicores [16, 27], while still us-
ing our existing characterization. Meng et al. [37] provide
a model for determining the optimal combination of power
optimizations. If job throughput is of greater concern, power
savings can be allocated towards hardware overprovisioning
[41, 46], with greater flexibility due to our PD configurability.
Moreover, different domains such as servers and data cen-
ters are often addressed with scheduling techniques [2, 24],
given that applications are commonly colocated through
VMs or containers. These techniques can be combined with
our fine-granularity characterization for determining ideal
application placement.

3 Motivation and Key Insights
For each challenge described in Section 1, we provide a de-
tailed example and insights to overcome each challenge.

3.1 Program Behavior
We first examine PENNANT, an MPI application from CORAL-
2 with amixture of memory-bound and compute-bound func-
tions. We measure the compute-boundedness using detailed
performance counters and offline analysis and demonstrate
with a code analysis in Figure 1 how separating phases at the
communication call granularity (as done in contemporary
solutions [7]) can lead to subpar results.

In themain loop, each iteration calculates the timestep (cal-
cGlobalDt) followed by a series of computations (doCycle).
An MPI_Allreduce call is made in this outer loop through
calcGlobalDt, as is common in many HPC applications. In
doCycle, multiple user functions are called, with the most
time-consuming ones shown in Figure 1. The only other MPI
call in the main loop is made in the middle of doCycle, in

// Driver.cc

while (cycle < cstop && time < tstop) { ...

calcGlobalDt (); // **calls MPI_Allreduce **

hydro ->doCycle(dt); // memory bound (~38ms each)

... }

// Hydro.cc

void Hydro:: doCycle (...) { ...

for (int sch = 0; sch < numsch; ++sch) {

... // computation

qcs ->calcForce (...); // 20% runtime ,

} ... // partial memory bound

mesh ->sumToPoints (...); // **calls MPI_Waitall **

... }

//QCS.cc

void QCS:: calcForce (...) { ...

setCornerDiv (...); // 10% runtime ,

... } // compute -bound

Figure 1: PENNANT [12] source code excerpt.

sumToPoints. Therefore, any DVFS approach that separates
phases at communication calls will consider much of the
computation that occurs within doCycle to be of the same
phase. Importantly, we measure setCornerDiv as compute-
bound and consuming 10% of the runtime, whereas the other
user functions are memory-bound. The functions within the
given for loop contribute to 45% of the total runtime.

If this for loop within doCycle is considered a single phase,
then it will be classified as partially memory-bound and run
at a low frequency. For instance, using the numbers above,
the single phase could be considered 22% compute-bound.
This will cause setCornerDiv to run at a much lower than
ideal frequency, resulting in performance loss (measured as
execution time), while the other functions run at a higher
than ideal frequency, resulting in power waste. This can be
avoided by appropriately adapting to the program behavior,
such as at the finer granularity of functions.

3.2 Performance Counters
The discrepancy and inaccuracy among counters in different
processors is a major problemwithin the industry - identified
both in the past [35] and also more recently [36]. A concrete
example shall explain the situation, based on experience de-
veloping industry-grade performance tools (CrayPat [9]). On
Intel Broadwell, Skylake, and Icelake processors, memory
bandwidth utilization had to be (loosely) approximated as
there was no event to report L3 writebacks (only L3 misses
was reported). On the latest Intel Sapphire Rapids (abbrevi-
ated SPR), there is a new counter for total writes to memory
(OCR:WRITE_ESTIMATE_MEMORY), which is helpful as
L3_Writebacks need not be approximated. But, since SPR uses
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chiplets, total read bandwidth is the sum of reads to the local
chiplet (OCR:READS_TO_CORE_LOCAL_SOCKET_DRAM)
and remote chiplets (OCR:READS_TO_CORE_REMOTE_-
DRAM). However, these 2 counters both report the same
values, leading to inaccurate bandwidth reporting. This in-
accuracy exists for various other counters.
Memory bandwidth utilization has been even more diffi-

cult to compute on AMD Rome, Milan, and now Genoa. On
Genoa, for instance, ANY_DATA_CACHE_FILLS_FROM_-
SYSTEM:DRAM_IO_NEAR:DRAM_IO_FAR and DEMAND_-
DATA_CACHE_FILLS_FROM_SYSTEM:DRAM_IO_NEAR:-
DRAM_IO_FAR both report the same values that seriously
under-reports memory bandwidth, which is crucial for accu-
rately estimating compute/memory boundedness.
Thus, while counters are necessary for characterization,

careful consideration must be made to account for the diver-
sity in accuracy and availability of hardware counters. In fact,
we can circumvent the issue of portability by relying on a
‘common subset of equivalent counters’ [53].We find that the
retired instructions counter meets these requirements, and
are among the 3 fixed counters on all Intel processors [21]
(the other 2 are typically core clocks and reference clocks).
Moreover, instructions per cycle (IPC) is commonly used
to describe performance and can be useful in classifying a
phase’s compute/memory boundedness.

3.3 Communication Phases
Parallel applications can spend a considerable amount of time
during communication over the network, which is commonly
split into slack time (time spent waiting to send/receive data)
and copy time (time spent sending/receiving data, which
can involve small computation e.g., reduction) [6, 45]. This
opens up a useful opportunity for power savings, especially
when slack time is entirely spent busy waiting which can
lead to the phase being classified as compute-bound and
thus made to (incorrectly) run at the highest clock. On the
other hand, copy time is often compute-intensive (e.g., as in
MPI_Allreduce) and introduces performance overhead when
also run at the lowest clock.

For example, MPI_Wait is a blocking call within the popu-
lar MPI communication library that waits for a correspond-
ing nonblocking Send or Receive request to complete and
consists entirely of slack time and thus is a prime candidate
for reducing clock frequency. We observe that simply lower-
ing core clock upon seeing an MPI_Wait routine improves
energy efficiency in some cases but hurts performance up to
2x in other cases.

The latter scenario is observed for specfem3D [56], a com-
pute bound application with communication calls that have
a small payload size (avg. 189 bytes). This leads to an average

of 5 𝜇s spent per wait call, which is much faster than the fre-
quency transition latency (we observe on the order of tens of
𝜇s). As a result, execution quickly exits the communication
calls and enters user code while the core clock is still being
lowered. Moreover, these short calls are made very often
(avg. 10 wait calls per ms). In fact, this is a general trend we
observe across MPI applications, that there are either very
many short MPI calls or much fewer long MPI calls. There-
fore, the compute bound user code in this scenario ends up
running at a much lower clock effectively, leading to the
observed 2x performance degradation.
Thus, one solution could be to observe/predict time per

MPI call and only lower frequencywhen the time perMPI call
is large enough as done in [5, 52]. However, this can induce
performance loss given that some communication calls have
considerable copy time, so an additional solution is to simply
raise core clock for these calls [6]. However, this can lead
to an undesirable result of overprovisioning power, if for
instance the surrounding user routines are memory bound.
We find this to be the case for PENNANT [12]. For each main
loop iteration, PENNANT makes a call to MPI_Allreduce,
as shown earlier in Figure 1. We find that these Allreduce
calls have small payload sizes (avg. 11 bytes) leading to short
time spent per call (avg. 21 𝜇s) and are called often (avg. 4
times per sec). Since the surrounding user code is overall
memory bound, attempting to raise the clock for Allreduce
leads to power waste (we observe 6% less savings) where the
subsequent user code runs at a higher clock than necessary.

Overall, the variety of different communication calls com-
bined with variety in payload sizes (and thus time spent)
associated with those calls makes it difficult to exploit this
useful opportunity. Moreover, any decision for communica-
tion phases should also account for the surrounding user
code to maximize power/energy savings, which is practical
when there are different phases, detailed in Section 5.

4 Application Characterization
We discuss our approach to a quantitative characterization
of an application phase as compute or memory bound using
a single easily-available and accurate performance metric.

4.1 Core Frequency and Application
Performance

In Figure 2, we observe an example demonstrating that (fully)
memory bound applications are oblivious to changes in core
frequency, whereas (fully) compute bound applications wit-
ness performance improvement proportional to increase in
core frequency. We find that a simple test is useful and effec-
tive for inferring compute/memory boundedness, by com-
paring the performance of an application at two different
clock frequencies. For example, if performance decreases at
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Figure 2: Core frequency vs. power and performance
of a memory bound (lbm, left) and a compute bound
(imagick, right) application on AMD Genoa.

the same ratio as the frequency, the application is considered
100% compute-bound (and 0% memory-bound), and if the
performance does not change at all with frequency, it is then
100% memory-bound (and 0% compute-bound).

To measure performance, IPC is a well-known perfor-
mance metric. Also, as discussed in Section 3, it is easily-
available across processors and accurate. But, only looking
at raw IPC and establishing thresholds for compute/memory
boundedness is not enough, because IPC values/thresholds
change across platforms/architectures and moreover IPC is
affected by frequency. For example, lowering frequency for
a memory-bound application can increase overall IPC be-
cause less cycles are needed to complete the same number
of instructions. This is especially detrimental in a dynamic
management approach. One way to avoid the dependency
on clock frequency while still capturing performance is to in-
stead use IPS, or instructions per second. Therefore, we calcu-
late compute-boundedness (CB) and memory-boundedness
(MB) using the IPS measured at two specific frequencies,
high and low:

%𝐶𝐵 = 100% ∗
𝐼𝑃𝑆ℎ𝑖𝑔ℎ

𝐼𝑃𝑆𝑙𝑜𝑤
− 1

𝐹𝑟𝑒𝑞ℎ𝑖𝑔ℎ

𝐹𝑟𝑒𝑞𝑙𝑜𝑤
− 1

, 0% ≤ %𝐶𝐵 ≤ 100% (1)

%𝑀𝐵 = 100% − %𝐶𝐵 (2)
Importantly, we only need to measure the IPS at the maxi-

mum frequency and one lower frequency. Moreover, Everest
should not use a frequency that is too low or all phases will
appear compute-bound (which is overly conservative). We
find that maintaining a frequency ratio of about 1.2 is suffi-
cient (depending on available frequency steps), while also
minimizing overhead. By default, this often amounts to using
the highest non-turbo frequency for 𝐹𝑟𝑒𝑞𝑙𝑜𝑤 . Also note that
this covers the case where the maximum turbo frequency is
not achievable (e.g., when all cores are active) and a lower
𝐹𝑟𝑒𝑞𝑙𝑜𝑤 may thus be necessary.

With %MB and %CB, we predict the relative performance
at any (lower) frequency as follows:

𝑇𝑖𝑚𝑒𝑙𝑜𝑤

𝑇𝑖𝑚𝑒ℎ𝑖𝑔ℎ
= %𝐶𝐵 ∗ (

𝐹𝑟𝑒𝑞ℎ𝑖𝑔ℎ

𝐹𝑟𝑒𝑞𝑙𝑜𝑤
− 1) + 1

Figure 3: Uncore frequency vs. power and performance
of a memory bound (lbm, left) and a compute bound
(imagick, right) application on Intel SPR. Core fre-
quency set to 2.5 GHz.

To allow the user to still control application performance,
we introduce a performance degradation variable (PD) that
defines a target performance to meet while maximizing
power savings. PD is relative to performance at peak clock
frequency. For example, 5% PDmeans that we should provide
at least 95% relative performance. We substitute PD into the
above formula to calculate the ideal frequency:

𝑇𝑖𝑚𝑒ℎ𝑖𝑔ℎ

𝑇𝑖𝑚𝑒𝑙𝑜𝑤
= 1 − 𝑃𝐷

𝐹𝑟𝑒𝑞𝑖𝑑𝑒𝑎𝑙 =
𝐹𝑟𝑒𝑞ℎ𝑖𝑔ℎ

1 + 𝑃𝐷
%𝐶𝐵 (1−𝑃𝐷 )

(3)

The ideal frequency is thus a function of %CB (%MB) and
the acceptable performance degradation, scaled by the maxi-
mum possible frequency. This is especially useful because
there are individual application phases that are neither 100%
compute or 100% memory bound. In such scenarios, addi-
tional power savings could be made if some performance
could be sacrificed. This makes it crucial for both the user
to define and for the tool to accommodate an acceptable
performance loss.

4.2 Uncore Frequency and Application
Performance

Uncore frequency scaling (UFS) has been supported on Intel
processors since Haswell [18]. We recognize that compute-
bound applications are less likely to have L3 cache accesses
and thus do not benefit from a high uncore frequency. There-
fore, we use our compute-bound characterization to addition-
ally make uncore frequency decisions on our Intel platform.
Specifically, to calculate uncore frequencies, we still use Equa-
tion 3 except substituting %MB for %CB. For instance, a 0%
MB phase can run at the lowest uncore frequency with mini-
mal performance loss, whereas a 100% MB phase should run
at the highest uncore frequency for no performance loss, as
indicated by Figure 3.
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Figure 4: Everest loop flowchart.

5 Implementation
Using the characterization and additional energy-saving tech-
niques outlined above, we propose Everest, a cross-platform
runtime tool that saves power and energy while meeting a
desired performance target.

InHPC, applications are typically launched as jobs through
the job scheduler or workload manager, with exclusive allo-
cation of one or multiple nodes. In this scenario, Everest op-
erates as an external (to the application) standalone process
that performs both dynamic application characterization and
consequently effects appropriate frequency changes. It is im-
portant to note that only a single Everest process is launched
on each allocated node and is responsible for observing the
job only for that node (assuming exclusive allocation, i.e.,
one job per node). Each Everest process thus makes DVFS
decisions independent of other nodes allocated to the job (i.e.,
without any global synchronization). This is made possible
within Everest given its ability to observe time spent within
communication routines on each node.
We integrate Everest with the job scheduler which auto-

mates the above mentioned launch of one Everest process
per node of each job. This integration also directly provides
the needed permissions for each launched Everest process to
change clock frequencies. For our experiments, we integrate
Everest with Slurm using the SPANK plugin architecture.
SPANK is a low cost, low effort, generic interface that can be
used to dynamically modify the runtime behavior of Slurm
job launch [32]. Similar methods are available for other job
schedulers (e.g., hooks for PBSPro, prolog/epilog). In par-
ticular, at job launch, our plugin determines which nodes
are allocated and executes a single instance of Everest for
each of those nodes. From a user’s perspective, the user only
needs to specify two additional parameters in addition to
their normal job script: whether to enable Everest and the
desired PD. For example, a user desiring to use Everest with
10% PD would submit:
srun –use-everest –everest-pd=10 <slurm -options > <binary >

Upon launching, Everest monitors a single application
process on the same node and periodically loops through
three stages: phase identification, phase characterization,
and frequency scaling. Figure 4 presents these stages as a
flowchart, which we expand on here.

5.1 Phase Identification
Everest first needs to identify application phases. We define
a phase as any section of contiguous memory addresses
(instructions) being executed within the application. This
means a phase can be a single instruction at the smallest
granularity, but this is not feasible for measuring IPS nor to
perform frequency scaling. Therefore, a phase will ideally
be at the smallest granularity that is still sufficiently large to
both measure its IPS and make use of DVFS. From Section
3.1, we note functions to be a useful granularity. In practice,
we observe that most functions consist of a single loop or
loop nests where behavior remains stable. Thus, we find
that using functions as phases is both practical and meets
our design considerations. Moreover, our approach is still
applicable at other phase granularities, assuming the above
considerations are satisfied.
The instruction pointer presents a simple method for de-

termining the current phase. For instance, we use the instruc-
tion pointer to determinewhich functionwe are in (at the leaf
level, i.e., bottom of the callstack) by using information from
the application’s ELF binary. Even when this information is
unavailable (as in stripped binaries), we still use the instruc-
tion pointer to obtain a distribution of memory addresses,
which is then used to delineate phases. Everest obtains the
instruction pointer by periodically sampling (every 50 us)
using the Linux perf_event interface. This is similar to how
the popular Linux profiling tool perf determines hot spots
when sampling performance counters, which we compare
to in our evaluation in Section 7.1.

Furthermore, we recognize that some phases may still end
up being too short, i.e., have a small time per call (e.g., 100 𝜇s)
relative to the frequency transition latency. In such scenarios,
we maintain the clock frequency of the previous phase until
a new phase is entered.

5.1.1 Communication Opportunity. While the instruction
pointer allows Everest to also identify MPI functions, the
many different MPI implementations introduce complica-
tions in identifying the desired functions. For instance,MPI_Wait
in CrayMPICHmakes calls to hundreds of internal functions.
Thus, we instead identify communication phases using the
MPI standard profiling interface (PMPI [39]). This allows
Everest to intercept MPI calls (upon entry and exit) and track
payload sizes and thus target MPI functions that we expect
to incur significant slack time or copy time. This includes
the MPI_Wait function that is associated with non-blocking
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point-to-point communication routines such as MPI_Isend
and MPI_Irecv, and other blocking point-to-point and col-
lective operations. If the payload size is large, indicating
sufficient time spent in slack, we then run at the minimum
frequency. For instance, we find that a payload size of 10KB
corresponds to about 100 𝜇s per call. Otherwise if the payload
size is small, we keep the clock frequency of the previous
compute/memory bound phase upon entering an MPI call,
and adjust frequency according to the next phase upon ex-
iting an MPI call. Similarly, for functions which can have
significant copy time such as MPI_Allreduce, we run at the
maximum frequency only when the payload size is large
enough and otherwise maintain frequency of the prior phase.
Moreover, the use of subcommunicators is another po-

tential source of performance loss as it allows for different
processes to be assigned different tasks. This can result in
processes on the same node to be in different phases, and an
ideal frequency for one process will differ for another process.
Everest mitigates these losses by conservatively running at
the highest clock when subcommunicators are utilized.

5.2 Phase Characterization
Next, Everest must characterize the individual phases. We
recognize that characterizing every single phase encoun-
tered will incur additional overhead. Thus, we require that
a phase be significant before characterizing it - the phase
must account for at least a certain percentage (e.g., 1%) of the
application’s current run time. Otherwise, we run at the high-
est clock permitted by PD (i.e., run at ideal clock assuming
100% CB). While this is conservative and avoids any potential
loss, our offline analysis reveals that these functions are very
often compute-bound.
If a phase is significant and has not been characterized,

Everest measures IPS as required by Equation 1 to calculate
%CB, which has two major steps. First, Everest raises the
core and uncore frequency to the maximum and samples IPS
for 100ms (configurable). Second, Everest lowers the core fre-
quency to the specified low frequency and again samples IPS
for 100ms. IPS is measured through the perf_event interface,
which allows Everest to sample the RETIRED_INSTRUCTIONS
counter at the shortest sampling period of 100,000 and also
obtain an instruction pointer and timestamp associated with
each sample. Everest then assigns each IPS sample to the
phase matching the address, which may include phases in
addition to the uncharacterized phase that we are interested
in. Additionally, an uncharacterized phase might only be
missing 𝐼𝑃𝑆ℎ𝑖𝑔ℎ or 𝐼𝑃𝑆𝑙𝑜𝑤 but not both, so one of the two
sampling steps can be skipped.

If a significant phase has already been classified, we reuse
the previous (stored) characterization and thus reduce over-
head from repeated characterization. However, we recognize

that resampling functions may be necessary, especially for
long-running applications, as their behavior may change. By
default, we choose to resample functions every 60 seconds;
this interval can be optionally configured.

5.3 Frequency Scaling
Finally, Everest performs DVFS for the current phase, repre-
sented by the green boxes in Figure 4.
If we are in an already characterized significant phase,

the ideal core frequency is calculated using Equation 3, but
the calculated frequency may not be an available frequency
option. If frequencies are available at a fine granularity (e.g.,
100MHz steps), we simply round up to the next frequency
step. However, if available frequencies are at a coarser gran-
ularity, simply rounding up can diminish power and energy
savings. In this case, we choose to emulate the ideal fre-
quency by running a fraction of time at the next lowest and
next highest frequency, at a timing ratio that results in the
desired frequency if calculated using a weighted average.
The actual frequency scaling is done using the cpufreq

driver for core frequency and the wrmsr utility (to write to a
Model Specific Register or MSR) for uncore frequency.
Importantly, changing frequencies does not happen in-

stantly and we must take into account switching latency.
According to the specifications on our systems, Intel SPR
has a 10 𝜇s transition latency and AMD Genoa has an 8 𝜇s
transition latency. We measure our evaluation platforms to
need about 50 𝜇s for the new frequency to take into effect.

5.4 Overhead
Since Everest is using multiple interfaces and interacting
with the OS in different ways, it is important to measure
the amount of overhead involved. We perform a holistic
measurement of overhead by running a version of Everest
that only profiles and characterizes application phases (i.e.,
we are not doing any ‘Run at X clock’ decisions in Figure
4), on a single node. We find that the overhead on average
causes a decrease in performance by 1%, increase in power
by 1%, and increase in energy by 2%, with fully compute-
bound applications impacted the most. Additionally, since
each instance of Everest only characterizes the application
locally, scaling to a larger number of nodes does not imply
increased overhead from the use of Everest on all nodes.
Furthermore, since we are dealing with frequent clock

frequency changes, we are interested in the overhead result-
ing from the worst case scenario of constantly switching
between two frequencies, compared to only performing that
switch once. For this study, we use exchange2 from SPEC
CPU2017 since it is overwhelmingly compute bound, rela-
tively long (>200s), and expected to have stable behavior
(90% runtime within the same function). We thus measure
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Figure 5: Core frequency for exchange2 when switch-
ing every 100𝜇s (left) vs. once (right) on AMD Genoa.

exchange2 when attempting to switch between turbo (3.2
GHz) and 2.4 GHz every 100 𝜇s compared to performing
the switch once halfway into the runtime (Figure 5). Note
that this experiment is without using Everest and does not
include the sampling overhead measured in the previous ex-
periment. We find that this switching overhead only causes a
decrease in performance by <1%, increase in power by <2%,
and increase in energy by <3%. Moreover, we are still able
to establish the expected effective frequency of 2.8 GHz at
this switching granularity.

6 Experimental Setup
We evaluate Everest on two server platforms with the lat-
est Intel and AMD processors. The two platforms used are
different not only in processor type, but also OS, size, and
power measurement methodology. The setup tests Everest’s
effectiveness in traversing these differences.
The Intel system has 1 node, with a dual socket Xeon

Platinum 8470 (SPR) with 52-cores and 8-channels of DDR5
per socket. The system uses SLES 15 SP5. SPR allows the user
to set the core frequency in 100 MHz increments from 800
MHz to 3 GHz, and also 3.8 GHz (turbo). Uncore frequency
is set in 100MHz increments from 800MHz to 2.5GHz. Power
measurements are obtained through reading RAPL MSRs.
The AMD system consists of 8 nodes, each with a dual

socket EPYC 9654 (Genoa) with 96-cores and 16-channels
of DDR5 per socket. The system uses Cray OS (2.4.96) and
Slingshot 11 high-speed network, with 2 Cassini 200GB NICs
per node. Genoa allows the user to set the frequency to 3.7
GHz (turbo), 2.4 GHz, 1.9 GHz, and 1.5 GHz. Power measure-
ments are obtained using PM counters available on Cray EX
systems [34] and collect real power and energy data, since
RAPL MSR data is only modeled in AMD [10].
We first evaluate our approach on the SPEC CPU 2017

benchmarks [50], running in ‘rate’ mode and using the ‘ref-
erence’ input set for full socket utilization. Because SPEC
CPU demonstrates a range of memory and compute bound
behavior, we are able to evaluate Everest’s ability to both
accurately characterize and adapt to different application
phases. We exclude blender on AMD due to compilation is-
sues. We then test a number of MPI applications chosen from
the CORAL-2 [29] and ECP [43] suites, which are commonly
used within HPC (Table 2) and allow us to evaluate how Ever-
est exploits communication phases and scales across multiple

nodes. All applications are compiled with CCE v11.0 (Cray
compiler), which includes Cray MPICH.

Benchmark Size
HPCG [19] 1043

specfem3D [56] NSTEP=800000, DT=0.05
SNAP [28] nx=192, ny=228, nz=80

PENNANT [12] sedovflat w/ nzx=7680, nzy=8640, dtinit=1.e-7
Nekbone [30] iel0=750, ielN=750, nx0=16, nxN=16
miniAMR [33] max_blocks=4000, num_objects=2, num_tsteps=100

Table 2: MPI Applications

We evaluate Everest with PD set to 5%, 10%, and 20%, with
the specific configuration indicated as Everest ([PD]%). For
the MPI applications, we compare to the current state-of-
the-art Energy Aware Runtime (EAR) [7]. EAR is currently
in use in SuperMUC-NG [31] (which sits at number 64 in
the TOP500) and also utilizes DVFS for phase-aware energy
savings. While their code is open source, their solution re-
quires a system-wide installation, which was not feasible
for our testing. We instead implemented EAR based on their
published work and available code for our experiments.

We also compare results with the Linux ‘ondemand’ gov-
ernor, disabling turbo boost, and a static oracle (Intel only).
The ondemand governor is provided by the OS as a way
to scale CPU frequency with CPU load, whereas disabling
turbo boost is an easy measure to boost power savings. These
simple baselines illustrate what can be achieved by any user
today. Since Intel provides finer-grained frequency steps, we
also evaluate an oracle that runs at the lowest static (i.e.,
unchanging) core and uncore frequencies (determined man-
ually) that meet the performance target.

7 Results and Discussion
We first present results evaluating Everest with SPEC CPU
2017 benchmarks on a single node for both AMD and Intel
platforms. We then evaluate Everest with various MPI appli-
cations from the CORAL-2 and ECP suites running on the full
8-node AMD system, in comparison to EAR. All results are
relative to the Linux performance governor, or equivalently
running at max (turbo enabled) frequency.

7.1 SPEC CPU 2017
AMD. Figure 6 compares the relative performance, power,
and energy of Everest (5%), (10%), and (20%) on 1 node from
the AMD system, with colored reference lines corresponding
to the PD of the same-colored bar. The bottom graph of the
figure compares the percentage energy to percentage perfor-
mance ratio, indicating when the energy reduction is more
than the performance reduction (i.e., when the value is <1)
and vice versa. The applications are ordered by increasing
overall compute-boundedness from left to right, as indicated
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Figure 6: Relative performance and energy comparing baselines (ondemand, no turbo) to Everest on AMD Genoa.
The bottom graph shows % energy to % performance ratio, where smaller (<1) is better.

in Table 3. Table 3 additionally compares Everest’s phase
profiling and characterization to the actual observed values
measured using Linux perf and offline analysis.

Overall Most time-consuming function
%CB %Runtime %CB

App Perf Perf Everest Perf Everest
bwaves 0% 61% 70% 0% 0%
fotonik3d 0% 27% 27% 0% 11%

wrf 0% 7% 5% 0% 7%
lbm 1% 99% 95% 0% 0%
roms 1% 35% 49% 0% 0%

cactubssn 10% 40% 37% 9% 0%
omnetpp 16% 19% 14% 63% 64%

gcc 24% 3% 5% 92% 100%
mcf 33% 65% 87% 0% 10%
xz 44% 75% 79% 67% 61%

parest 57% 31% 22% 70% 71%
xalancbmk 72% 42% 33% 98% 100%

cam4 72% 9% 5% 47% 44%
deepsjeng 93% 15% 13% 99% 100%
perlbench 96% 42% 26% 100% 100%
namd 100% 12% 14% 100% 93%
nab 100% 71% 67% 100% 100%
x264 100% 19% 17% 100% 100%

imagick 100% 41% 39% 100% 100%
leela 100% 67% 65% 100% 100%
povray 100% 15% 16% 100% 96%

exchange2 100% 93% 91% 100% 100%

Table 3: SPEC 2017 most time-consuming function
%runtime and %CB, for perf vs. Everest.

As expected, the overwhelmingly memory bound appli-
cations (bwaves to roms) receive minimal performance loss
when lowering core frequency and save about 30% energy
regardless of PD. The overwhelmingly compute bound ap-
plications (namd to exchange2) are easily characterized by
Everest and lowered to the appropriate core frequency to
meet desired performance within 3% while also saving power.
For the mixed compute and memory bound applications

in the middle, Everest’s phase awareness allows for energy
savings (i.e., accounting for the memory bound phases) while
still meeting the performance guarantee (i.e., accounting for
the compute bound phases). For example, compared to the
fully compute bound applications, these applications achieve
on average similar performance while also saving 4%, 9%, and
14% energy for Everest PD = 5%, 10%, and 20%, respectively.

On the other hand, no turbo varies wildly in performance
(losing up to 35% performance). Thus, despite the poten-
tial power/energy savings that can be made, users disabling
turbo must also be willing to accept much more performance
loss, especially if the nature of the application is unknown.
This is reflected by the energy to performance ratio, where
a desirable ratio is achieved for memory bound applications
but is unacceptable for compute bound applications. Unfor-
tunately, the ondemand governor is not helpful as it scales
core frequency to the maximum, given the application load.

Lastly, by incorporating PD, Everest provides the flexibility
to make additional power and energy savings. As seen from
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Figure 7: Relative performance and energy comparing baselines (ondemand, no turbo, static oracle) to Everest on
Intel SPR. The bottom graph shows % energy to % performance ratio, where smaller (<1) is better.

the geomean, a larger PD is consistent with more power
and energy savings on average, but potentially diminishing
returns as indicated by the energy to performance ratio.
Intel. While on AMD the ondemand governor behaves

exactly like the performance governor, it differs on Intel due
to the additional uncore frequency scaling knob. Since the
uncore is underutilized during compute-bound applications,
the ondemand governor is able to lower the uncore frequency
and essentially redistribute the power to the core, improving
performance. Although Everest optimizes for minimal power
consumption, we demonstrate that Everest too captures these
performance gains at low PD, e.g. 5% PD (Figure 7).

For the memory bound applications, Everest achieves 10-
20% energy savings with about 5% performance loss. At
most, we see a 7% performance loss with lbm, accompanied
by 33% energy and 38% power savings. Importantly, both
naive strategies do not detect these available savings. We
would have expected the no turbo strategy to save more ener-
gy/power given that these applications are memory-bound,
but we find that the primary reason for this disparity is from
uncore power consumption, which the oracle accounts for.

On the other hand, Everest is able to save 5-10% energy by
improving performance in the compute-bound applications.
This performance improvement comes from again reducing
the uncore frequency. Lowering the uncore power contribu-
tion means the processor is no longer at the TDP, allowing
CPU frequency to scale up and resulting in faster core com-
putation and better performance. We see that the ondemand
governor also improves in performance and energy for the

compute-bound applications for the same reasons (lowering
uncore frequency). Lastly, the no turbo strategy understand-
ably reduces performance by over 20% for compute-bound
applications with only about 5% power savings (no uncore
frequency adjustments), so energy also increases.
For applications in the middle, Everest achieves results

mostly on par with the baseline and ondemand, with about
the same energy and <3% performance loss. We believe these
lack of savings are again due to the uncore. For example, for
mcf, the static oracle reveals that both core and uncore fre-
quency must remain relatively high to achieve the desired
performance. However, Everest still improves over onde-
mand and the baseline (and achieve close to the oracle) for
mixed applications xz and xalancbmk, which see 5% and 9%
energy savings respectively. Again, no turbo does the worst
overall, but with results exacerbated by the uncore.

7.2 HPC
Figure 8 compares Everest to EAR for MPI applications on
our AMD system (8 nodes, 1536 ranks). Everest achieves
on average 8% better energy savings compared to EAR.

The key difference between EAR and Everest is the granu-
larity of phases. Since EAR defines phases at the communi-
cation call granularity (which often only occur in the outer
loop), EARmisses phases that occur between communication
calls, as discussed in Section 3. Moreover, Everest’s aware-
ness of slack within communication phases largely enhances
its ability to save energy, and Everest limits performance
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Figure 8: Relative performance, energy, and energy-
performance ratio for MPI applications with EAR vs.
Everest on AMD Genoa.

loss by accounting for time per call. We find that multiple ap-
plications spend 10-20% runtime within MPI; thus lowering
frequency during slack time can be quite significant.

HPCG and SNAP are memory-bound and both Everest and
EAR decide to lower core frequency. However, a significant
portion of runtime is spent within communication, which
EAR classifies as compute-bound and thus does not recognize
the potential savings, whereas Everest identifies the large
send/recv payload size (>20KB) and lowers frequency during
the long blocking wait calls. Everest keeps frequency low
even for SNAP despite its short nonblocking waits, given the
surrounding memory-bound code. As a result, EAR only
saves 11% energy compared to Everest’s 25% energy savings.

PENNANT, Nekbone, and miniAMR have both compute and
memory bound phases, so detecting these phases are again
important for maximizing savings. For example, Everest gets
better savings (24%) on PENNANT compared to EAR’s 18%
energy savings by accounting for finer-grained phases (i.e.,
that occur within the doCycle function which dominates the
outer loop) in addition to the communication phases. Specif-
ically, Everest identifies 6 significant phases corresponding
to the functions doCycle (0% CB), setCornerDiv (84% CB),
calcForce (54% CB), calcCtrs (8% CB), calcVols (5% CB), and
sumToPoints (0% CB). This aligns with the offline analysis
made in Section 3.1. Furthermore, Everest lowers frequency
during the long MPI wait calls (also in Nekbone especially)
and maintains the low frequency from surrounding memory
bound user code for MPI_Allreduce.

Lastly, specfem3D is an overall compute-bound applica-
tion with about 20% runtime spent in slack. As noted previ-
ously, payload sizes within specfem3D are very small leading
to minimal time spent in each wait call, meaning significant
performance loss will occur if frequency is lowered here,
shown by no turbo. Everest recognizes this fact and thus is
able to meet the performance guarantee in this case. While
EAR does not have to worry about this and thus achieves the
same results as Everest, this again comes at the detriment of
losing out on savings in the other applications.
Overall, Everest improves considerably over EAR by ex-

ploiting opportunities from communication phases in addi-
tion to making finer-grained phase characterizations, leading
to 9% better energy to performance ratio on average.
Communication scale. As applications scale, the com-

munication expectations such as time per call may vary,
potentially affecting Everest. As such, we analyzed how time
per wait call changes for each application at 1, 2, 4, and 8
nodes. When problem size remains the same, payload size
and time per call decrease in tandem as node count increases,
with at most specfem3D seeing up to 75% reduction for both.
When problem size also scales with node count, the time
per call remains about the same. Therefore, despite potential
changes in communication patterns at scale, we expect Ever-
est to exhibit low sensitivity to these changes and still make
use of its time per call estimates to achieve similar results.
Load imbalance. For parallel applications, load imbal-

ance is a critical performance bottleneck. We demonstrate
that Everest does not worsen load imbalance through an addi-
tional evaluation of miniAMR [33]. miniAMR automatically
performs load balancing across ranks at each refinement step,
but this can be disabled (which induces 71% performance loss
by default). For load-imbalanced miniAMR, we measure that
Everest (10%) appropriately lowers performance by 4%, for
8% power and 3% energy savings. Thus, Everest still ensures
the performance target, relative to the default run (i.e., with
load balancing disabled in this case).

8 Conclusion
We identify three challenges towards a runtime energy sav-
ing solution - effective adaptation to program phases for
improved efficiency, versatility to operate across processors,
and flexibility to handle parallel applications involving com-
munication. We show that Everest, our proposed tool, ad-
dresses these challenges. Everest achieves versatility by re-
lying on a single easily available (across processors) and
accurate performance metric for finding energy saving op-
portunities. Owing to fine-granularity phase-awareness and
accurate computation of MPI slack time, Everest finds en-
hanced energy saving opportunities and thus saves up to
20% more energy than existing solutions.
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