
SYprox: Combining Host and Device Perforation with Mixed
Precision Approximation on Heterogeneous Architectures

Lorenzo Carpentieri
Department of Computer Science

University of Salerno
Fisciano, Salerno, Italy
lcarpentieri@unisa.it

Biagio Cosenza
Department of Computer Science

University of Salerno
Fisciano, Salerno, Italy
bcosenza@unisa.it

Abstract
Approximate computing is an emerging paradigm that aims to

exploit the inherent error tolerance of many applications, particu-
larly in domains such as image processing and machine learning.
Taking advantage of this property, applications can trade off accu-
racy for significant gains in performance and power consumption.
Existing approximation techniques for GPUs are limited to very
specific approaches, do not fully exploit the host-device execution
model, and are often restricted in terms of programming models
and supported target hardware. This paper introduces SYprox, a
new approximate computing framework based on SYCL that allows
programmers to easily implement heterogeneous approximated
applications. SYprox supports multiple techniques, including data
perforation, signal reconstruction, and mixed precision, and allows
them to be combined to support a wide range of approximations. In
particular, SYprox extends existing perforation approaches to allow
both host and device data perforation. Experimental results show
that SYprox’s approximations are Pareto dominant with respect
to state-of-the-art approaches and are portable to AMD, Intel and
NVIDIA GPUs.

CCS Concepts
• Software and its engineering→ Software development tech-
niques; Parallel programming languages; Software perfor-
mance;

Keywords
Approximate Computing, Programming Models, SYCL, Data Perfo-
ration, Reconstruction, Mixed Precision.

ACM Reference Format:
Lorenzo Carpentieri and Biagio Cosenza. 2025. SYprox: Combining Host and
Device Perforation with Mixed Precision Approximation on Heterogeneous
Architectures. In 2025 International Conference on Supercomputing (ICS ’25),
June 08–11, 2025, Salt Lake City, UT, USA.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3721145.3725741

1 Introduction
In many real-world applications, it is recognized that absolute

precision is not always necessary, especially when weighed against

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725741

the potential benefits of consistently improved performance, in-
creased energy efficiency, and better resource utilization. This has
led to the development of approximate computing techniques based
on the observation that many computational tasks can produce ac-
ceptable results even when subjected to controlled inaccuracies.

However, the use of approximate computation techniques
presents several challenges [2, 24]. By trying to minimize error
and maximize other metrics, typically performance, we are actu-
ally formulating a multi-objective problem. Since approximation
accuracy and performance are not correlated, this leads to a multi-
objective problem without a single optimal solution, but rather a
set of Pareto optimal dominant solutions [7]. Dealing with multi-
objective problems and Pareto sets makes the optimization process
more complicated for users, who need to understand the different
trade-offs at stake.

The second challenge is presented by the wide range of tech-
niques that span multiple levels of the computing stack, from hard-
ware design to software implementations. From a software per-
spective, some of the most promising approaches are the use of
lower-precision arithmetic units in mixed precision methods [4],
the perforation of data, either input or output, and the use of signal
reconstruction techniques to mitigate error [19, 20]. Those promis-
ing techniques are typically used standalone.

However, the potential combined application of such techniques
can unleash unprecedented improvement, as it results in more over-
all approximations in the multi-objective accuracy/performance
space, ultimately leading to better Pareto optimal solutions. In
fact, this is not easy because existing techniques are difficult to
apply and often rely on very specific approaches [17, 36], compilers
[14, 32, 35], or programming languages [9, 25, 38]. While compiler
approaches are desirable, they are also complex and often limited
to very specific architectures.

This paper proposes a novel approximation framework based
on the SYCL programming model, which aims to easily implement
approximated applications on a wide range of GPUs from different
vendors, as well as providing a way to combine state-of-the-art
approximation techniques in a composable way, so that they can
be easily combined to deliver unprecedented gains in accuracy and
performance.

This paper makes the following contributions:

• SYprox, a new approximate computing interface based on
SYCL that allows programmers to easily implement hetero-
geneous approximated applications with state-of-the-art ap-
proximation techniques such as perforation, mixed precision,
and signal reconstruction;

https://orcid.org/0009-0001-2041-7618
https://orcid.org/0000-0002-8869-6705
https://doi.org/10.1145/3721145.3725741
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3725741

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lorenzo Carpentieri and Biagio Cosenza

• a new perforation approach called host perforation, which
applies perforation on the host data and only sends/receives
perforated data to/from the device;

• for the first time, the ability to combine data perforation and
reconstruction techniques (on the host, device, or both) with
mixed precision to support an unprecedented number of
approximations;

• experimental results of SYprox approximation techniques
(individually and in combination) and a comparison with
state-of-the-art frameworks (HPAC [9, 25] and Maier et al.
[20]) for eight benchmarks on 100 input datasets evaluated
on GPUs from different vendors, including AMD, Intel, and
NVIDIA.

The rest of the paper is organized as follows. Section 2 discusses
approximate computing techniques and related works. Section 3
provides an overview of the SYprox framework. Section 4 intro-
duces the SYprox interface. Section 5 presents the host perforation
technique, while Section 6 describes our combined approximation
strategy. Section 7 shows the experimental setup and evaluation,
and Section 8 concludes the paper.

2 Background and Related Work
Over recent years, several software techniques have emerged

to enable approximate computation, helping applications enhance
performance while retaining acceptable accuracy levels. This sec-
tion provides an overview of the key approaches and how they are
implemented in existing programming models [24].

2.1 Approximation Techniques
Mixed Precision [16, 28] involves the use of different levels of pre-

cision within the same program. Rather than uniformly adopting
high precision data types (e.g., double precision), mixed precision
methods selectively apply lower precision (e.g. half precision) in
suitable situations, consequently lowering computational workload,
memory usage, and energy demands. By carefully balancing preci-
sion levels, mixed precision can significantly enhance performance
with minimal accuracy loss.

Loop Perforation [27, 36] is a technique that reduces the number
of iterations in a loop. Instead of executing every iteration, the
loop is "perforated" by skipping some iterations based on a prede-
fined pattern, thereby reducing overall execution time and energy
consumption.

Data Perforation [8, 19] is similar to loop perforation, but operates
at the level of data rather than the control flow. In this technique,
a subset of data points is skipped during computation, effectively
reducing the total execution times.

Reconstruction techniques try to fill the accuracy gaps left by
skipped computations or data points to maintain the quality of the
output. Missing values are approximated on the basis of available
data. There exist two types of reconstruction: output reconstruction
approximates the data that were perforated after the computation
using interpolation between the output elements; input reconstruc-
tion involves a set of local reconstruction techniques that work
with local memory and efficiently combine the sparse data fetched
by global perforation schemes while consistently improving the

accuracy of the approximation [21, 22]. Reconstruction allows per-
foration techniques to achieve significant computational savings
while maintaining an acceptable level of accuracy in the final out-
put.

With respect to the state-of-the-art techniques, we implemented a
new data perforation approach called host perforation, which applies
perforation on the host data and only sends/receives perforated data
to/from the device

2.2 Programming Models Approaches
With the increasing demand for higher performance in comput-

ing systems, approximate computing methods have become essen-
tial to improve computational efficiency. To facilitate the adoption
of these techniques, various frameworks have been implemented.

Manual Approach. Approximate computing techniques can be
applied directly by the programmer without any assistance from
compilers or specialized programming models. Maier et al. [21, 22]
define a local memory-aware approximation approach based on
loop perforation that approximates the input data of GPU applica-
tions by reducing the amount of data loaded from global memory
and reconstructing a high-accuracy approximation with local re-
construction techniques. With respect to manual approaches, our
work proposes a library-based framework that automatically applies
approximations, eliminating the need for manual implementation by
programmers.

Compilers. Although manual approaches method can yield sig-
nificant performance gains, it places a heavy burden on developers
and is error-prone due to the lack of automated tools. Several works
have focused on integrating approximate computing techniques
directly into compilers. These compilers can automatically identify
opportunities for approximation and apply transformations that
improve performance, such as reducing computational precision
[5, 6, 15, 16, 28, 33], loop perforation [1, 10, 18, 19, 23, 29, 31], or
relaxing memory consistency [3, 17, 26]. Paraprox [29] is a soft-
ware solution applicable to commodity hardware that automatically
discovers and approximates common patterns such as map, scatter/-
Gather, reduction, and others. For each pattern, Paraprox provides
an approximation strategy with one or more knobs that can be
used to navigate the performance-accuracy trade-off. Lou et al. [19]
presented a new prototype language and compiler that applies loop
perforation and output reconstruction only to the image processing
pipeline. Laguna et al. [15] propose GPUMixer a tool to tune the
data precision of applications on GPUs. Although common mixed-
precision approaches change the precision of variable declarations,
a fine-grained approach is to express the precision of each floating-
point operation in the program. GPUMixer provides a practical
method to select the computations to be performed on FP32 or FP64
precision so that user-defined accuracy constraints are maintained
and performance is significantly improved. By automating the ap-
plication of approximations, compiler-based approaches reduce the
complexity of adopting approximate computing techniques. How-
ever, with fully automatic approaches, programmers are required
to trust the system, with no way to intervene when opportunities
are overlooked or invariants are compromised. In contrast, our work
abstracts compiler-level approximations to the library level, with-
out requiring novel programming model prototypes and specialized

SYprox ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 1: Overview of SYprox approximation

compilers. Furthermore, our approach applies to general-purpose ap-
plications, enabling approximation beyond a specific domain.

Language Extensions. Programming models have also been ex-
tended to support approximate computing by providing abstrac-
tions and frameworks that allow developers to specify approximate
behaviors more easily [9, 37, 38] . These models often provide
APIs, annotations, or directives that enable programmers to define
where and how the approximation should occur. This simplifies the
development process by integrating approximate computing into
higher-level programming constructs, offering a more structured
and less error-prone approach than manual or compiler methods.
Parasyris et al. [25] propose HPAC, a framework that extends the
OpenMP programming model in order to provide approximate
computing techniques. This approach incorporates pragma-based
annotations composable with standard OpenMP annotation, code
transformations, and, analysis to enable developers to identify ap-
proximation opportunities in their applications. HPAC facilitates
the integration of loop perforation and memoization, offering a
mechanism to investigate the accuracy-performance trade-offs for
a given application. This system suggests potential approximations
that can enhance performance while maintaining the accuracy lev-
els defined by the user. The framework has been extended to enable
approximate computing techniques also on GPUs [9] by extending
the OpenMP annotation for GPU offloading.With respect to the state
of the art, we propose the first header-only library in SYCL that imple-
ments data perforation, reconstruction, and mixed precision allowing
programmers to define configurable and heterogeneous approximated
application.

Table 1 compares the capability of several related works and
SYprox. By comparison, our proposed solution introduces an in-
novative library-based method for approximate computing in het-
erogeneous architectures, implementing host/device perforation,
reconstruction, and mixed precision. To the best of our knowledge,
SYprox is the first library-based framework that allows program-
mers to write heterogeneous applications that combine host/device
perforation with input/output reconstruction and mixed precision.

Table 1: Comparison against state of the art

Approach Perforation Reconstruction
Mixed

Precision
Maier et al. [20] manual device input ✗

Paraprox [30] compiler loop output ✗

HPAC [9] compiler loop ✗ ✗

GPUMixer [15] compiler ✗ ✗ ✓

Lou et al. [19] compiler image* output ✗

SYprox library host, device input, output ✓

*Lou et al. apply device perforation only to images.

3 Overview
SYprox is a header-only library designed to extend the SYCL

programming model with advanced approximate computing tech-
niques, including perforation, reconstruction, and mixed precision.
This extension enables developers to integrate approximations into
their applications with minimal code modifications. Figure 1 illus-
trates a SYCL code enriched with approximate computing features
and shows the combination of applied approximations. SYprox pro-
vides an easy-to-use and highly customizable interface. Program-
mers can implement approximations using built-in parameterizable
schemes (prow, pcol) for perforation (pbuffer, paccessor) and recon-
struction (input and output), develop custom schemes tailored to
specific applications, or mix different data types for mixed precision
computing. SYprox introduces a novel technique called host per-
foration, which selectively perforates data on the host side before
transferring them to the device, thus optimizing both computation
and communication. In Figure 1 the host data are perforated and
reduced to the half data type before data transfer. The data on
the device are processed in a perforated shape using device perfora-
tion (paccessor). The perforated elements are then reconstructed
according to the selected schema (nn_out) and sent back to the
host. The ability of SYprox to combine different approximations
increases the range of feasible configurations by generating new
trade-offs between performance and accuracy (Section 6). The flex-
ibility of the SYprox interface not only facilitates the adoption of

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lorenzo Carpentieri and Biagio Cosenza

approximate computing techniques across heterogeneous architec-
tures but also expands the approximation domain by enabling new
Pareto-optimal configurations.

4 SYprox Programming Interface
4.1 SYCL Programming Model

1 queue q(gpu_selector_v);
2 buffer <int , 2> outBuf(out ,range <2>(N,N));
3 q.submit ([&](handler& h) {
4 accessor outAc(outBuf ,h);
5 h.parallel_for(r,[=](id <2> i) {
6 outAc[i] += outAc[i] * 2;
7 });
8 });

Listing 1: SYCL accurate code

The SYprox library is based on SYCL a single-source C++ program-
ming model designed to improve the performance and portability
of applications running on heterogeneous architectures, such as
CPUs, GPUs, and other accelerators.
Listing 1 shows a simple SYCL code. The parallel_for (line 5)
define a kernel code to be executed on a device such as a GPU.
The device on which the kernel code is executed is represented
by a queue (line 1). SYCL offers two methods for handling data
transfers between the host and the device: a pointer-based strategy
called Unified Shared Memory (USM) and the buffer/accessor.
Our work leverages buffer and accessor but can be easily ex-
tended to USM. Buffers (lines 2) abstract memory management and
represent a range of memory that can be used on either the host or
the device. Accessors (lines 5) are used to specify how to access the
data within a buffer (e.g read or write). Differently from USM, with
buffer and accessor the SYCL runtime automatically manages
data movements between the host and the device. The next sections
describe in detail how SYprox extends the buffer and accessor
of SYCL to enable approximate computing features.

4.2 Data Perforation
The SYprox library implements two types of data perforation: the

device perforation defined by Maier et al. [20] and a novel approach
called host perforation.

1 // buffers ...
2 q.submit ([&](handler &h){
3 paccessor <float ,2,prow <float ,2>> inAc{inBuf ,h};
4 paccessor <float ,2,prow <float ,2>> outAc{outBuf ,h};
5 h.parallel_for(prange <>{N,N},[&](id <2> id){
6 outAc[id[0]][id[1]] = inAc[id[0]][id [1]]*2;
7 });
8 }

Listing 2: SYprox code with device perforation

4.2.1 Device Perforation. The device perforation is implemented
as an extension of the SYCL accessor class. The paccessor adds
a new template parameters to the SYCL accessor which specify
how the data are accessed on the device. The class implements an
on-line perforated access to the data by overloading the subscript

operator ([]) so that, while all original data remain in memory, only
specific parts are accessed according to the selected perforation
schema (Section 4.2.3). Using a row schema and skip factor of 𝑥 the
access to a[i][j] is translated into a[i*x][j]. Listing 2 shows
a SYprox code with device perforation. Lines 3-4 define two bidi-
mensional perforated accessors using a row schema with a skip
factor of two. In line 6 according to the row schema, the data will be
accessed in a perforated shape. The access to the element at the in-
dex {id[0],id[1]} translates in {id[0]*2, id[1]}. The prange
semantic (line 5) defines a set of deduction rules to automatically
infer the range of the kernel according to the perforation schema
used.

1 range <2> r{N,N}
2 pbuffer <float ,2,prow <float ,2>> inBuf(in,r);
3 buffer <float ,2> outBuf(out ,r);
4 q.submit ([&](handler &h){
5 // accessors ...
6 h.parallel_for(prange <>{N, N},[&](id <2> id){
7 outAc[{id[0]*2,id [1]}]= inAc[id]*2;
8 });
9 }

Listing 3: SYprox code with host perforation

4.2.2 Host Perforation. SYprox implements host perforation by
defining a pbuffer, which extends the SYCL buffer. The pbuffer
introduces new template parameters into the SYCL buffer to specify
the type of perforation scheme to be used (4.2.3). The pbuffer
intercepts the SYCL buffer constructor, applying the perforation
to the data before the invocation of the buffer constructor. This
process involves iterating over the elements passed to the pbuffer,
perforating data based on the approximation strategy defined by
the ApproxSchema class (e.g. prow, pcol). Listing 3 shows a SYprox
code with host perforation and a row scheme (line 2).
4.2.3 Perforation and Reconstruction Schemes.

SYprox pbuffer and paccessor class perforate and reconstruct
data according to a perforation and reconstruction schema defined
by a specialization of the SYprox ApproxSchema class. SYprox de-
fines for the pbuffer and the paccessor three built-in schemes
configurable by the type of data used and the number of data to
skip (skip_factor).

Strided scheme skips a fixed number of data points in a consistent
stride. For example, with a skip factor of 2, every other data point
is skipped.

Row scheme applies to bi-dimensional data. Skip entire rows of
data according to the defined skip factor.

Col is similar to the row scheme but operates column-wise.
For each schema, SYprox also provides input and output recon-
struction strategies of two types: nearest neighbor where perforated
elements are reconstructed using the neighbor element; lerp where
perforated elements are reconstructed with a linear interpolation
of two or more elements. Both reconstructions are implemented in
an optimized way leveraging the SYCL sub-group and group algo-
rithms. The SYprox ApproxSchema class is designed with flexibility
in mind to serve as a base class for customizing data perforation
methods according to the specific use case. Programmers can de-
fine any kind of static approximation schema by implementing the
method defined by the ApproxSchema class.

SYprox ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

1 range <2> r = range <2>{N,N};
2 pbuffer <float ,2,prow <float ,2,nn_out >> inBuf(in,r);
3 q.submit ([&](handler &h){
4 paccessor <float ,2> inAc{inBuf ,h,read_write };
5 h.parallel_for(prange <>{N,N},[&](id <2> id){
6 outAc[id] = inAc[id] * 2;
7 });
8 }

Listing 4: SYprox code with host perforation and output
reconstruction

Listing 4 shows a SYprox code that combines host perforation with a
row perforation schema and output reconstruction with the nearest-
neighbor reconstruction schema (line 2).

4.3 Mixed Precision

1 std::vector <float > in;
2 pbuffer <half ,2> inBuf(in,range <2>{N,N});
3 buffer <float ,2> outBuf(out ,range <2>{N,N});
4 q.submit ([&](handler &h){
5 // accessors ...
6 h.parallel_for(prange <>{N, N},[&](id <2> id){
7 outAc[id] = inAc[id]*2;
8 });
9 }

Listing 5: SYprox code with mixed precision

Listing 5 shows a mixed precision computation with float and
half data type with SYprox. The float data in the in vector are
converted in half precision during buffer construction thorugh the
sycl::reinterpret function . Then the kernel performs a mixed-
precision computation on float and half data. The library sup-
ports all the lower precision formats defined in the SYCL standard
and also other formats such as bfloat16, which are implemented
as experimental extensions in DPC++ [12].

5 Host Perforation

Host perforation
Host Device

Device Perforation
Host Device

Figure 2: Host and device perforation approach.

This section presents host perforation a novel data perforation
technique implemented in SYprox. Figure 2 shows a comparison
between the traditional device perforation and the host perforation
approach. Host perforation performs data perforation on the host
before sending the data to the device. In contrast, device perforation
requires transferring all data from the host to the device, where
they are then accessed in a perforated shape according to a pattern

defined by the SYprox approximation schema (Section 4.2.3). The
host perforation offers two distinct advantages over the device per-
foration. Firstly, it significantly reduces the amount of data transfer
needed between the host and the device. This reduction in data
transfer can lead to improved performance in applications where
data movement is a bottleneck. Secondly, host perforation provides
a better cache utilization, since eliminates data access issues due
to the data layout. By perforating the data on the host, accesses to
the device data can be performed continuously, maximizing cache
utilization (Section 7.3). However, in host perforation, once the data
have been perforated in the host, they cannot be used on the de-
vice. This limitation may affect scenarios where devices require
direct access to perforated data for further processing or computa-
tions. Moreover, host perforation is only beneficial when the time
required to perforate the data on the host is less than the time
needed to transfer the full dataset to the device. In our experiments
(Section 7), we tested data sizes up to the maximum available and
did not observe cases where device perforation was more efficient.
However, this may not hold for systems with higher host-device
memory bandwidth or hosts with lower compute capabilities.

6 Combined Approximation
This section demonstrates how the integration of various approx-

imation techniques can lead to improvements in both the accuracy
and efficiency of applications. Figure 3 illustrates the speedup and
error for the individual approximations and how they can be com-
bined to generate new performance and accuracy trade-offs using
a blur filter application as an example. To perforate the data, we
applied a skip factor of two, reducing the number of rows and
columns by half for row and column schema, respectively. The
red line represents the Pareto frontier: a set of optimal solutions
where no solution can be improved without degrading another ob-
jective. Here, the Pareto front helps to identify trade-offs between
performance and error.

In the following sections, we provide insight into the behavior
of individual approximation techniques and their combination.

6.1 Individual Approximation
SYprox implements 5 approximation techniques: Mixed Preci-

sion, Device and Host Perforation, and Reconstruction. Each ap-
proximation can be represented as a set of different configurations.

Mixed Precision. For mixed precision, we used floating point
data as a baseline and half precision as a lower precision data
type (𝑀𝑝 = { floating, half }). With the half configuration we mix
floating-point and half data types. Unlike data perforation, which
skips data processing, mixed precision results in only a 1% error, as
it only processes the entire dataset with reduced precision.

Device Perforation. The possible configurations with device per-
foration depend on the number of schemes implemented. In our
experiment, we used the row and column schemes with a skip
factor of two, resulting in two configurations (𝐷𝑝 = {row, col}).
Data perforation without reconstruction leads to an error of ap-
proximately 50% since for skip factor of two half of the data are
perforated. Furthermore, the column schema exhibits a significant
performance slowdown due to increased cache misses caused by
the data layout.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lorenzo Carpentieri and Biagio Cosenza

Figure 3: Individual and combined approximation

Host Perforation. The host approach shares the same number of
configurations as the device perforation. Both approaches result
in the same error, since they operate on the same data. However,
the host approach achieves a higher speedup due to reduced data
transfer and optimized data layout for the column schema.

Reconstruction. SYprox provides two types of reconstruction
schemes nearest-neighbor (nn) and linear interpolation (lerp) both
implemented with input and output reconstructions, resulting
in four different configurations (𝑅 = {nn_in, nn_out, lerp_in,
lerp_out}). Nearest-neighbor reconstruction is faster but less ac-
curate since the reconstruction only uses one of the computed
elements to approximate the perforated data , while linear inter-
polation provides higher accuracy with only a minor impact on
speedup due to the time spent in the interpolation. Input reconstruc-
tion involves reconstructing data before computation, resulting in
less error but lower performance. Output reconstruction, on the
other hand, reconstructs data after computation, which usually
leads to higher error but also higher speedup.

6.2 Approximation by Combining Techniques
The SYprox interface provides a way to combine individual ap-

proximations. When combining these techniques, the number of
available configurations is equal to the Cartesian product of each
individual approximation: |𝑀𝑝 | × |𝐷𝑝 | × |𝐻𝑝 | × |𝑅 |, resulting in an
approximation space composed of 32 points. Combining different
approximation techniques allows us to expand the approximation
domain and explore new performance-accuracy trade-offs. In fact,
Figure 3 (Combined Approximation) shows that we can achieve a
3x speedup with a maximum error of 6%. However, not all combi-
nations yield efficient results. For example, any combination that
applies device perforation with a column schema typically shows
lower performance due to cache misses related to the type of data
layout. Composing different approximations can also increase the
error. However, signal reconstruction techniques can help mitigate
the error by generating new Pareto-optimal solutions. Notice that
the number of available configuration can also be higher since
we can have more data types (e.g. bfloat16) or for perforation
schemes skip_factors higher then two.

7 Experimental Evaluation
In this section, we present an analysis to assess the efficacy of

approximate computing techniques comparing SYprox with state-
of-the-art approaches [9, 20, 25].

7.1 Experimental Setup
7.1.1 Benchmark Description. We conducted the experimental eval-
uation on eight benchmarks described in Table 2.

Table 2: Applications used for experimental evaluation

Benchmark Domain Size Kernels’ LoC

median Medical imaging 30722 45

sobel Edge detection 30722 40

blur Image blurring 30722 21

tv Edge detection 30722 18

gaussian Image blurring 30722 34

hotspot Phisical simulation 40962 150

lavaMD Molecular dynamics 1283 219

leukocytes* Medical imaging 219x640 281

*leukocytes consists of 3 kernels that process several frames.

The benchmarks were selected to have a direct comparison of
the proposed host perforation approach with the device perforation
method described by Maier et al. [20]. We implemented the applica-
tions in SYCL using the SYprox library to apply our approximation.
To ensure a direct comparison with the HPAC framework [9, 25], all
benchmarks were ported from SYCL to OpenMP with GPU offload-
ing and then integrated into the framework using specific HPAC
directives for approximation.

The image processing benchmarks are executed on a dataset
composed of 100 images of 30722 size to analyze the error variation
of each approximation on different inputs. The input data sets are
taken from the USC-SIPI Image Database [39]. For lavaMD and
hotspot we randomly generated 100 input files. The speedup is
calculated using the accurate application as a baseline, while the
error uses the mean absolute percentage error, defined as MAPE =

100%
𝑛

∑𝑛
𝑖=1

��� 𝐼𝑖−𝐼𝑖𝐼𝑖

���, where 𝐼𝑖 and 𝐼𝑖 are the accurate and approximated
data, respectively.

7.1.2 Parameter Description. In all experiments, we executed host
and device perforations with row and column schemes using a
skip factor of 2, while for mixed precision, we adopted floating
and half-data types. The half-configuration mix floating point and
half-data types. For the reconstruction step, we applied the input
(in) or output (out) reconstruction with the nearest neighbor (nn)
or linear interpolation (lerp). Benchmarks implemented with local

SYprox ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

median tv sobel3 blur gaussian lavamd hotspot leukocytes
0

10

20

30

M
AP

E
(%

)

Col Input reconstruction
Row Input reconstruction

Col Output reconstruction
Row Output reconstruction

Figure 4: Error of different approximate strategies.

0

2

4

Da
ta

 Tr
an

sf
er

Sp
ee

du
p

Float Half
Perforation

host + row device + row host + col device + col

(a) Data transfer speedup.

median tv sobel3 blur gaussian hotspot lavamd leukocytes
0

2

4

Ke
rn
el

Sp
ee

du
p

median tv sobel3 blur gaussian hotspot lavamd leukocytes

(b) Kernel speedup.

Figure 5: Data transfer 5a and kernel 5b speedup of all applications for host/device perforation and float/half precision. The
red line represents the baseline defined as the accurate execution.

memory use a size defined by the block size, which in our case is
fixed to 32x32.

7.1.3 Software and Hardware Configuration. For the experimental
evaluation of our approach, we rely on Intel DPC++ [11] SYCL
compiler and the one provided by HPAC [9] for OpenMP. All SYCL
and OpenMP codes have been compiled using the -O3 flag. We
performed our experiments on three separate nodes, each equipped
with: an AMD EPYC 7313 CPU and AMDMI100 GPU; an Intel Xeon
Platinum 8480 CPU and an Intel Max 1100 GPU; an Intel Xeon Gold
5218 and NVIDIA V100S.

7.2 Error Analysis
Figure 4 shows the MAPE for each benchmark executed with

host perforation and input/output reconstruction on 100 different
data sets. For lavamd, hotspot, and leukocytes, we only show
the results for the column schema as they have been implemented
using one-dimensional buffers and a one-dimensional perforation
scheme that skips every other element, effectively corresponding

to a column schema in two dimensions. The error analysis is not
affected by the type of perforation applied (host or device), as
both techniques perforate the same elements, leading to identical
errors. For this reason, our analysis focuses only on host perforation.
The results highlight that the amount of error depends on type of
computation performed by the application, input data, perforation
schema applied (row, col) and the type of reconstruction (input,
output).

Computation. The tv and sobel benchmarks exhibit an error of
up to 30% compared to the 1-15% error range of the other applica-
tions. This variation is due to the type of computation performed
by each application. Applications based on average and median
calculations (gaussian, blur, and median) are less affected by data
perforation compared to the sobel and tv filters.

Input Data. The error introduced by data perforation is also
correlated with the type of input. Applying perforation and recon-
struction on inputs with higher data similarity produces a lower
error. Looking at the column schema results for leukocytes and
guassian the MAPE is in the range 1-15% while for blur 3-5%. The

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lorenzo Carpentieri and Biagio Cosenza

variation in error is much clearer on the sobel and tv benchmark,
where MAPE varies in the range 5-30%.

Perforation Schemes. The error is also affected by the type of
schema used. As an example, the blur application shows an error
between 3-5% for the row schema and 1-2% for the column schema.

Reconstruction. The input reconstruction usually achieves a lower
error compared to the output reconstruction. With the input ap-
proach, the perforated data are reconstructed prior to computation.
Consequently, the computation uses the same number of data as the
accurate application, resulting in a lower error. For all applications,
the input reconstruction has a lower or similar error compared
to the output reconstruction. For instance, in the leukocytes and
sobel application, output reconstruction leads to an error of 15%
and 30%, while the input reconstruction keeps it below 5% and 20%.

To reduce the number of configuration in each plot, we only
show results using a skip_factor of two. However, we con-
ducted additional experiments to explore how the variation of
the skip_factor affects both performance and error. As the
skip_factor increases, performance improves approximately
linearly-typically, a skip factor of 𝑋 yields an 𝑋 -fold speedup. In
contrast, the error does not increase linearly, as it is influenced by
multiple factors discussed above.

7.3 Host vs Device Perforation
Here, we focus on a performance comparison of the host perfora-

tion implemented in SYprox with the device perforation defined by
Maier et al. [20]. Figure 4 illustrates the performance improvement
in data transfer and kernel computation for each application com-
pared to accurate execution (red dashed line) for both host (blue)
and device (orange) perforation. The dashed and dotted hatch rep-
resent the row and column perforation schemes, respectively.

Host perforation consistently outperforms device perforation
in terms of data transfer speedup, as shown in Figure 5a. This is
because host perforation reduces data transferred to the device,
achieving a speedup of 1.3x to 2x for floating-point data and 2.5x
to 4.2x for half-precision data. In contrast, device perforation offers
no such improvement, as all data are sent to the device.

Looking at the kernel speedup results in Figure 5b, host perfo-
ration outperforms device perforation in all applications, with the
exception of lavamd and hotspot, where both methods achieve
the same speedup. Host perforation speedups range from 1.7x to
4.2x, while device perforation range from 0.5x to 3.5x. The primary
reason for the lower performance of device perforation is related to
increased cache misses, which significantly impact its efficiency, in
particular for the column schema. Profiling the applications with
NVIDIA Nsight Compute we can notice an L2 cache hit rate of 76%
for host perforation against the 49% of the device approach. In de-
vice perforation, the perforated data are still in memory, while
accesses are performed in a perforated shape. Therefore, with a
column schema, more than half of the data loaded into the cache
are never used during computation, increasing the number of cache
misses. In contrast, with host perforation, we achieve comparable
performance for both schemes, since the data are reorganized in
memory to avoid the load of unused data in the cache. For the
column schema, this issue is highlighted in blur, leukocytes, and

gaussian, which achieve speedups of 0.5x, 0.6x, and 0.75x, respec-
tively, resulting in a slowdown compared to the accurate version,
while host perforation reaches a speedup of up to 2x. For the row
schema, gaussian, tv, and blur show a similar behaviour since
each kernel thread processes a 6x6 filter, leading to the same access
problem of the column schema. In contrast, for sobel and median,
which use a smaller 3x3 filter, device perforation achieves similar
performance compared to host perforation due to the lower number
of cache misses. The slowdown related to cache misses is mitigated
using the half data types, since with reduced precision, we can
store more data in the cache, resulting in a lower number of cache
misses.

7.4 SYprox vs HPAC
In this section, we conducted a multi-objective evaluation to

analyze the trade-offs between speedup and error in the SYprox
and HPAC frameworks. All SYprox benchmarks were ported from
SYCL to OpenMP with GPU offloading and subsequently integrated
into the HPAC framework. We tested HPAC applications with two
loop perforation approaches: small skips one iteration for every
𝑛 iterations; large executes one iteration for every 𝑛 iterations.
The hotspot results with HPAC are unavailable because using the
perforation pragma defined by HPAC causes the application to
run indefinitely. Figure 6 illustrates multi-objective plots for the
8 applications comparing the SYprox and HPAC frameworks. The
x-axis represents the speedup, while the y-axis the Mean Absolute
Percentage Error (MAPE). Points located in the bottom right cor-
ner of the plot are preferable as they indicate better performance
with a lower error. For SYprox, the color of markers with different
shades of red and blue represent the device and host perforation
approaches, respectively, while the violet point represents the com-
bination of host and device perforation. The different shades of a
color indicate different reconstruction methods: nearest-neighbor
or linear interpolation with input or output reconstruction (nn_in,
nn_out, lerp_in, lerp_out). Markers are utilized to differentiate
between combinations of perforation schemes (row, column) and
data types (float, half). Within the HPAC setup, the blue markers
denote configurations that employ loop perforation of type ’large’,
while the orange ones employ loop perforation of type ’small’. The
different markers in the HPAC framework correspond to different
skip factors. The red and green lines represent the Pareto frontier
of SYprox (𝑃𝑆) and HPAC (𝑃𝐻), respectively.

Multi-objective Analyses. For all benchmarks, the HPAC configu-
rations show a higher error range compared to SYprox, due to the
lack of reconstruction techniques. For the gaussian benchmark, it
achieves up to 3x speedup at the cost of the 80% error, while for the
other benchmarks, the speedup is between 1.5x and 2x with an error
in the range of 10-60%. On the other hand, SYprox has multiple
configurations involving mixed precision and perforation/recon-
struction with different schemes. This diversity allows for a wide
range of trade-offs, potentially making it more flexible in tuning per-
formance versus accuracy. Most the SYprox configurations achieve
an error less than 20% while achieving a nearly 4x speedup for all
benchmarks. Furthermore, except for the tv benchmark, the Pareto
frontier of SYprox always dominates the one of HPAC. This implies
that for any given range of error or performance, SYprox offers

SYprox ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

0 1 2 3 4
Speedup

0
20
40
60
80

M
AP

E
(%

)

median

Pareto Front
HPAC
SYprox

HPAC Perforation
small-2
small-4

small-8
large-2

large-4
large-8

 SYprox
Mixed prec.

half
float

 SYprox
Perforation/Recontruction

device + lerp_in
device + nn_in
host + device + lerp_in

host + device + nn_in
host + lerp_in
host + lerp_out

host + nn_in
host + nn_out

 SYprox
Schema + Mixed prec.

row + float
row + half

col + float
col + half

Pareto Front
HPAC
SYprox

0 1 2 3 4
Speedup

tv

0 1 2 3 4
Speedup

sobel

0 1 2 3 4
Speedup

blur

0 1 2 3 4
Speedup

gaussian

0.0 2.5 5.0 7.5
Speedup

0

50

M
AP

E
(%

)

lavamd

0.0 0.5 1.0 1.5
Speedup

0

1

2
leukocytes

0.0 2.5 5.0 7.5
Speedup

0

2

hotspot

Figure 6: SYprox vs HPAC. The colors represent perforation and reconstruction techniques. Markers define the combination of
schemes and data types. The green and red lines represent the HPAC and SYprox Pareto frontier.

configurations that are at least as good as, and often better than,
those offered by HPAC.

Table 3: Evaluation of HPAC and SYprox Pareto fronts

Benchmark |𝑃𝐻 | |𝑃𝑆 | 𝐻𝑉𝐻 𝐻𝑉𝑆 𝐷 (𝑃, 𝑃𝐻)
median 3 6 0.1 5.9 0
sobel 2 5 0 18.7 0
blur 3 7 3.3 5.7 0
tv 3 5 1.7 14.6 1.2
gaussian 3 5 2.2 3.8 0
leukocytes 3 3 1.4 1.8 0
lavaMD 1 5 3.05 6.8 0.07
hotspot - 4 - 8.1 -

Hypervolume Analyses. Table 3 shows different metrics to com-
pare the configuration of HPAC and SYprox. |𝑃𝐻 | and |𝑃𝑆 | represent
the number of points in the Pareto set of HPAC and SYprox, respec-
tively. For all benchmarks, we can notice |𝑃𝑆 | >= |𝑃𝐻 | meaning
that the SYprox framework generates more Pareto optimal solution
compared to HPAC. In multi-objective optimization, the hypervol-
ume metric [40] (𝐻𝑉) is used to evaluate the performance of a
Pareto front by calculating the volume of the space in the objec-
tive domain that is dominated by the Pareto front, up to a refer-
ence point. A larger hypervolume indicates better performance,
as it means that the Pareto front spans a larger region of the ob-
jective space, representing more optimal trade-offs between the
objectives. In our case, we are interested in the coverage differ-
ence between two sets: the Pareto set 𝑃 calculated considering the
configuration of both SYprox and HPAC; and the Pareto set cal-
culated only considering the SYprox configurations 𝑃𝑆 . Therefore,
we use the binary hypervolume metric [34], which is defined as
𝐷 (𝑃, 𝑃𝑆) = 𝐻𝑉 (𝑃)−𝐻𝑉 (𝑃𝑆), where𝐻𝑉 (𝑃) and𝐻𝑉 (𝑃𝑆) represents

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Speedup

0

1

2

3

4

5

6

7

M
AP

E
(%

)

Pareto Front
Maier et al.
SYprox

Mixed prec.
half
float

Perforation/Recontruction
device + lerp_in
device + nn_in
host + device + lerp_in
host + device + nn_in

host + lerp_in
host + lerp_out
host + nn_in
host + nn_out

Schema + Mixed prec.
row + float
row + half

col + float
col + half

Pareto Front
Maier et al.
SYprox

Figure 7: Domain space of the approximate computing tech-
niques for Maier et al. and SYprox approach. Different colors
represent combination of perforation and reconstruction.
Markers distinguish the combination of perforation schemes
and data types.

the hypervolume of the 𝑃 and 𝑃𝑆 Pareto frontier. In our experiment,
the reference point for each benchmark has been selected accord-
ing to the analysis provided by Ishibuchi et al.[13] in order to have
accurate hypervolume results. Looking at the hypervolume values
the SYprox Pareto front always covers a larger region of the ob-
jective space compared to HPAC. This observation indicates that
the SYprox approximations are distributed along the speedup and
error axes in a way that encompasses wider levels of performance
and accuracy. The coverage difference (𝐷 (𝑃, 𝑃𝐻)) shows that for
all the applications the Pareto frontier of SYprox dominates the one

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lorenzo Carpentieri and Biagio Cosenza

0 1 2 3 4 5 6
0

10

20

so
be

l3

M

AP
E

(%
)

AMD

 SYprox
Mixed prec.

half
float

 SYprox
Perforation/Recontruction

device + lerp_in
device + nn_in
host + device + lerp_in

host + device + nn_in
host + lerp_in
host + lerp_out

host + nn_in
host + nn_out

 SYprox
Schema + Mixed prec.

row + float
row + half

col + float
col + half

 SYprox
Mixed prec.

half
float

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

10

20

Intel

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

10

20

NVIDIA

0 1 2 3 4 5
Speedup

0

2

4

6

bl
ur

M
AP

E
(%

)

0 2 4 6 8
Speedup

0

2

4

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Speedup

0

2

4

6
0 1 2 3 4 5 6

0

5

10

15

20

25

so
be

l3

M

AP
E

(%
)

AMD

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

20

25

Intel

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

20

25

NVIDIA

0 1 2 3 4 5
Speedup

0

1

2

3

4

5

6

bl
ur

M
AP

E
(%

)

0 2 4 6 8
Speedup

0

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Speedup

0

1

2

3

4

5

6

Figure 8: Performance evaluation of SYprox on AMD, Intel and NVIDIA hardware. The color represents different perforation
and reconstruction techniques. Markers are used to distinguish the combination of perforation schemes and data types.

of HPAC. The only exception is the tv and lavamd benchmarks,
where the coverage difference is non-zero because there are two
and one points, respectively, in 𝑃𝐻 that have no counterparts in
the SYprox Pareto front that outperform them in both dimensions.

7.5 Approximation Space Evaluation
Figure 7 shows the speedup and error of SYprox in comparison

to the Maier et al. approach, highlighting several key advantages of
our method. Enhanced Coverage of the Objective Space. One of the
primary benefits of SYprox lies in its ability to generate a substan-
tially larger number of configurations compared to the approach
proposed by Maier et al. This advantage is illustrated in Figure
7, where the SYprox configurations span a wider section of the
objective space. This expanded coverage allows an exploration of
a wider spectrum of speedup and error trade-offs, thereby facil-
itating more precise optimization tailored to diverse application
requirements. The SYprox configurations extend across both axes,
indicating a versatile approach capable of addressing various per-
formance and error needs. Additionally, the approximation domain
can be further broadened by adjusting the skip factor parameter,
thereby generating new potential Pareto-optimal solutions.

Discovery of New Pareto Optimal Solutions. By combining differ-
ent approximation techniques, SYprox not only expands the config-
uration space, but also identifies new Pareto optimal solutions that
were previously unattainable with existing methods. SYprox’s ad-
vantages are evident when considering device perforation with the
column schema. In this case, the column schema can cause cache
misses due to the data layout, leading to a performance slowdown
of up to two times. By applying host perforation instead of device
perforation, we mitigate the cache misses generated by the column

data layout. This adjustment allows the configuration with host per-
foration and the column schema to perform comparably to the row
schema and even become a Pareto optimal solution. This demon-
strates how SYprox can overcome specific performance bottlenecks
and optimize configurations that were previously suboptimal. This
capability is reflected in the red Pareto front associated with SYprox,
which dominates the green Pareto front of Maier et al., showing that
our approach consistently outperforms the prior state-of-the-art.

Combining Approximation. SYprox demonstrates significant per-
formance improvements by combining various approximation tech-
niques. Combining mixed precision with the other approximation
often generates new configurations that are Pareto optimal, since
reducing precision in most cases introduces a small error with up to
2x speedup. Furthermore, by combining host and device perforation
with mixed precision, we achieve up to 3.5x speedup with only a
7% error. This combination is particularly effective because it takes
advantage of the strengths of all the approximations.

7.6 Performance and Accuracy Portability
Figure 8 demonstrates the portability of our approach across

different hardware architectures, including AMD MI100, Intel Max
1100 and NVIDIA V100S GPUs. A key observation is that the error
remains consistent across all three hardware platforms. This consis-
tency highlights that the approximate computing techniques imple-
mented in SYprox are predominantly data-dependent rather than
hardware-dependent. The only notable exception is half-precision,
which introduces slight variations due to differences in hardware
precision handling. However, these variations are minimal and
do not significantly affect the overall error profile. When analyz-
ing performance, we notice some variability between hardware

SYprox ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

platforms. All platforms achieve speedups of more than 3x, with
some hardware yielding even better performance using the same
approximation.

8 Conclusion
This paper presents SYprox, a novel approach for heterogeneous

approximate computing. SYprox makes three major breakthroughs:
a SYCL-based interface that extends SYCL buffer and accessor with
approximate computing capabilites; a new data perforation ap-
proach that allows to fully exploit the host-device execution model;
a way to combine data perforation, reconstruction, and mixed pro-
cess expanding the approximate spacewith new Pareto-optimal con-
figurations. We have experimentally assessed the SYprox methodol-
ogy on AMD MI100, Intel Max 1100, and NVIDIA V100, comparing
it with state-of-the-art frameworks. The results highlighted the
advantages of host perforation, which consistently outperforms
device perforation by reducing both kernel computation and data
transfer times. Moreover, the ability of SYprox to combine multiple
approximation techniques provides a rich set of Pareto optimal
solutions that outperform prior methods, such as those proposed
by Maier et al. and the HPAC framework. SYprox not only discovers
more Pareto optimal solutions, but also expands the coverage of
the objective space, offering greater flexibility for tuning trade-offs
between speedup and error. Finally, our approach demonstrated
robust performance and accuracy across different GPUs, validating
the SYprox performance and accuracy portability.

Acknowledgments
We acknowledge financial support under the National Recov-

ery and Resilience Plan (NRPP), call for tender No. 104 published
on 02/02/2022 by the Italian Ministry of University and Research
(MUR), funded by the European Union - Next Generation EU, Mis-
sion 4, Component 1, CUP D53D23008590001, project title LibreRT.

We thank CINECA for providing access to the Intel Max 1100
GPU.

References
[1] Woongki Baek and Trishul M Chilimbi. 2010. Green: A framework for supporting

energy-conscious programming using controlled approximation. In Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation.

[2] Hrishav Bakul Barua and Kartick ChandraMondal. 2019. Approximate computing:
A survey of recent trends—bringing greenness to computing and communication.
Journal of The Institution of Engineers (India): Series B (2019).

[3] Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks. 2015.
HELIX-UP: Relaxing program semantics to unleash parallelization. In 2015
IEEE/ACM International Symposium on Code Generation and Optimization (CGO).

[4] Stefano Cherubin and Giovanni Agosta. 2020. Tools for reduced precision com-
putation: a survey. ACM Computing Surveys (CSUR) (2020).

[5] Stefano Cherubin, Daniele Cattaneo, Michele Chiari, Antonio Di Bello, and Gio-
vanni Agosta. 2020. TAFFO: Tuning Assistant for Floating to Fixed Point Opti-
mization. IEEE Embedded Systems Letters (2020).

[6] Eva Darulova and Viktor Kuncak. 2017. Towards a compiler for reals. ACM
Transactions on Programming Languages and Systems (TOPLAS) (2017).

[7] Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. 2016. Multi-objective
optimization. In Decision sciences.

[8] Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet Kohli. 2016.
Perforatedcnns: Acceleration through elimination of redundant convolutions.
Advances in neural information processing systems (2016).

[9] Zane Fink, Konstantinos Parasyris, Giorgis Georgakoudis, and Harshitha Menon.
2023. HPAC-Offload: Accelerating HPC Applications with Portable Approximate
Computing on the GPU. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis.

[10] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Martin
Rinard. 2009. Using code perforation to improve performance, reduce energy
consumption, and respond to failures. (2009).

[11] Intel. 2022. oneAPI Data Parallel C++ compiler. https://github.com/intel/llvm/
releases/tag/2022-09

[12] Intel Corporation. 2024. SYCL EXT ONEAPI Bfloat16 Math Functions.
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_
ext_oneapi_bfloat16_math_functions.asciidoc Accessed: 2024-09-12.

[13] Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. 2017. Reference
point specification in hypervolume calculation for fair comparison and efficient
search. In Proceedings of the genetic and evolutionary computation conference.

[14] Maria Kotsifakou, Prakalp Srivastava, Matthew D Sinclair, Rakesh Komuravelli,
Vikram Adve, and Sarita Adve. 2018. Hpvm: Heterogeneous parallel virtual
machine. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming.

[15] Ignacio Laguna, Paul C Wood, Ranvijay Singh, and Saurabh Bagchi. 2019.
Gpumixer: Performance-driven floating-point tuning for gpu scientific appli-
cations. In High Performance Computing: 34th International Conference, ISC High
Performance 2019, Frankfurt/Main, Germany, June 16–20, 2019, Proceedings 34.

[16] Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supinski, and Matthew P.
Legendre. 2013. Automatically Adapting Programs for Mixed-Precision Floating-
Point Computation. In Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing.

[17] Kooktae Lee and Raktim Bhattacharya. 2016. On the relaxed synchronization for
massively parallel numerical algorithms. In 2016 American Control Conference
(ACC).

[18] Shikai Li, Sunghyun Park, and Scott Mahlke. 2018. Sculptor: Flexible approxima-
tion with selective dynamic loop perforation. In Proceedings of the 2018 Interna-
tional Conference on Supercomputing.

[19] Liming Lou, Paul Nguyen, Jason Lawrence, and Connelly Barnes. 2016. Image
perforation: Automatically accelerating image pipelines by intelligently skipping
samples. ACM Transactions on Graphics (TOG) (2016).

[20] Daniel Maier, Biagio Cosenza, and Ben Juurlink. 2018. Local memory-aware
kernel perforation. In Proceedings of the 2018 International Symposium on Code
Generation and Optimization.

[21] Daniel Maier and Ben Juurlink. 2021. Model-Based Loop Perforation. In European
Conference on Parallel Processing.

[22] Daniel Maier, Nadjib Mammeri, Biagio Cosenza, and Ben Juurlink. 2019. Ap-
proximating memory-bound applications on mobile GPUs. In 2019 International
Conference on High Performance Computing & Simulation (HPCS).

[23] Subrata Mitra, Manish K Gupta, Sasa Misailovic, and Saurabh Bagchi. 2017. Phase-
aware optimization in approximate computing. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO).

[24] Sparsh Mittal. 2016. A survey of techniques for approximate computing. ACM
Computing Surveys (CSUR) (2016).

[25] Konstantinos Parasyris, Giorgis Georgakoudis, Harshitha Menon, James Diffend-
erfer, Ignacio Laguna, Daniel Osei-Kuffuor, and Markus Schordan. 2021. HPAC:
evaluating approximate computing techniques on HPC OpenMP applications.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis.

[26] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and
Daniel Prener. 2012. Programming with relaxed synchronization. In Proceedings
of the 2012 ACM workshop on Relaxing synchronization for multicore and manycore
scalability.

[27] Martin Rinard, Henry Hoffmann, Sasa Misailovic, and Stelios Sidiroglou. 2010.
Patterns and Statistical Analysis for Understanding Reduced Resource Computing.
ACM Sigplan Notices (2010).

[28] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and David Hough.
2013. Precimonious: Tuning Assistant for Floating-Point Precision. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis.

[29] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke.
2014. Paraprox: Pattern-based approximation for data parallel applications.
In Proceedings of the 19th international conference on Architectural support for
programming languages and operating systems.

[30] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke.
2014. Paraprox: Pattern-based approximation for data parallel applications.
In Proceedings of the 19th international conference on Architectural support for
programming languages and operating systems.

[31] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott
Mahlke. 2013. Sage: Self-tuning approximation for graphics engines. In Proceed-
ings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture.

[32] Adrian Sampson, André Baixo, Benjamin Ransford, Thierry Moreau, Joshua Yip,
Luis Ceze, and Mark Oskin. 2015. Accept: A programmer-guided compiler frame-
work for practical approximate computing. University of Washington Technical
Report UW-CSE-15-01 (2015).

https://github.com/intel/llvm/releases/tag/2022-09
https://github.com/intel/llvm/releases/tag/2022-09
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_bfloat16_math_functions.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_bfloat16_math_functions.asciidoc

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Lorenzo Carpentieri and Biagio Cosenza

[33] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. 2011. EnerJ: Approximate Data Types for Safe and
General Low-Power Computation. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation.

[34] Ke Shang, Hisao Ishibuchi, Linjun He, and Lie Meng Pang. 2020. A survey on
the hypervolume indicator in evolutionary multiobjective optimization. IEEE
Transactions on Evolutionary Computation (2020).

[35] Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Akash Kothari, Ben Schreiber,
Elizabeth Wang, Yasmin Sarita, Nathan Zhao, Keyur Joshi, Vikram S Adve, et al.
2021. ApproxTuner: a compiler and runtime system for adaptive approximations.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming.

[36] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
2011. Managing performance vs. accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering.

[37] Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D
Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dim-
itrios S Nikolopoulos. 2016. Exploiting significance of computations for energy-
constrained approximate computing. International Journal of Parallel Program-
ming (2016).

[38] Vassilis Vassiliadis, Konstantinos Parasyris, Charalambos Chalios, Christos D
Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans Vandierendonck, and Dim-
itrios S Nikolopoulos. 2015. A programming model and runtime system for
significance-aware energy-efficient computing. ACM SIGPLAN Notices (2015).

[39] Allan G.Weber. 2006. The USC-SIPI Image Database. http://sipi.usc.edu/database/
database.php. Accessed: August 2018.

[40] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and Vi-
viane Grunert Da Fonseca. 2003. Performance assessment of multiobjective
optimizers: An analysis and review. IEEE Transactions on evolutionary computa-
tion (2003).

http://sipi.usc.edu/database/database.php
http://sipi.usc.edu/database/database.php

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Approximation Techniques
	2.2 Programming Models Approaches

	3 Overview
	4 SYprox Programming Interface
	4.1 SYCL Programming Model
	4.2 Data Perforation
	4.3 Mixed Precision

	5 Host Perforation
	6 Combined Approximation
	6.1 Individual Approximation
	6.2 Approximation by Combining Techniques

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Error Analysis
	7.3 Host vs Device Perforation
	7.4 SYprox vs HPAC
	7.5 Approximation Space Evaluation
	7.6 Performance and Accuracy Portability

	8 Conclusion
	Acknowledgments
	References

