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Abstract

With the advancement of HPC platforms, the demand for
high-performing applications continues to grow. One effec-
tive way to enhance program performance is through paral-
lelization. However, fully leveraging the powerful hardware
of HPC platforms poses significant challenges. Even expe-
rienced developers must carefully consider factors such as
runtime, memory usage, and thread-scheduling overhead.
Additionally, achieving successful parallelization often re-
quires running applications to determine the optimal config-
urations. In this paper, we propose ConTraPh, a framework
that integrates Contrastive Learning with Transformers and
Graph Neural Networks to capture the inherent parallel char-
acteristics of source programs through a multi-view pro-
gram representation, utilizing both source code and com-
piler intermediate representations. This contrastive learning
framework allows the model to effectively learn correct par-
allel configurations from positive samples while avoiding
incorrect ones through negative samples. We evaluate Con-
TraPh on six downstream tasks involving three different
parallel programming models OpenMP, OpenCL and, Ope-
nACC that include OpenMP clause prediction, performant
reduction style detection, performant scheduling type de-
tection, CPU/GPU parallelism prediction, Heterogeneous
Device Mapping for OpenCL code, and OpenACC clause
prediction. ConTraPh outperforms state-of-the-art models
in these tasks, achieving accuracy improvements of up to 8%,
10%, 7%, 4%, 2%, and 9%, respectively. ConTraPh achieves
speedups as high as 13x, 18x, 14x, and 4.4x on the reduction
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style detention, scheduling type detection, CPU/GPU paral-
lelism prediction, and Heterogeneous Decive Mapping tasks,
respectively. Results also demonstrate that ConTraPh can
be integrated with third-party tools, such as large language
models (LLMs), to enhance the performance of state-of-the-
art models like GPT-4 by up to 15% based on established code
generation metrics, such as CodeBERTScore. ConTraPh is
available at https://github.com/quazirafi/ConTraPh.git.
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1 Introduction

Automatic parallelization of source code remains one of the
most challenging problems in high-performance comput-
ing (HPC). As applications demand increasingly extensive
computational resources, the need for frameworks that can
automatically optimize program performance has become
more critical than ever. This challenge arises from the nu-
merous factors involved, with one of the most significant
being the identification of code regions that can be executed
in parallel.
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However, identifying parallelism opportunities within pro-
grams alone is insufficient for achieving significant perfor-
mance improvements. There aremultiple ways and strategies
for parallelizing a program, and the optimal approach is often
determined through manual inspection of the source code
or by employing brute-force methods. This process may in-
volve executing the program in various configurations to
identify the best parallelization strategy, which is computa-
tionally expensive and can hinder developers’ productivity.
OpenMP, OpenCL, OpenACC are widely used programming
models for writing parallel programs. These programming
frameworks offer both CPU and GPU level parallelism oppor-
tunities. OpenMP andOpenACC also provide various clauses,
such as private, reduction, firstprivate, lastprivate,
simd, target, and others, which facilitate parallelization of
source programs. Different programs may require specific
clauses for efficient parallelization, and it is important to
note that not all programs are amenable to parallelization.
A code region may require multiple clauses to ensure

proper parallelization, as well as memory and data consis-
tency. Therefore, developers must carefully analyze the pro-
gram to identify regions suitable for parallelization. Sub-
sequently, they should select the most appropriate subset
of clauses to effectively parallelize the identified code re-
gion. ConTraPh assists in this process by automatically
identifying parallel code regions suitable for parallelization
clauses and recommending the appropriate subset of clauses
for parallelizing these regions. An essential consideration in
parallelization is that simply parallelizing a program is not
enough unless it results in a performance gain. One of the
primary objectives of program parallelization is to improve
runtime efficiency. The same program can be parallelized in
various ways, and different parallelization techniques can
significantly impact its performance. For instance, as noted
by the authors in [23], various OpenMP configurations, such
as reduction and scheduling, can influence program per-
formance. However, determining the optimal configuration
for a given program is often not straightforward. A careful
analysis, frequently accompanied by the execution of the
program under different configurations, is essential to make
an informed decision. This process is both challenging and
computationally expensive. Therefore, ConTraPh aids by
automatically identifying optimal configurations for a code
region. It generates a ranking of these configurations by ana-
lyzing the flow-aware characteristics of the code region from
multiple perspectives.
To address this challenging problem, ConTraPh utilizes

multi-view program representations to learn underlying fea-
tures. It employs the source code as a sequence of tokens (a
high-level view) and a graph representation of the program,
constructed from three types of program flows: control flow,

data flow, and call flow, all derived from the compiler’s inter-
mediate representation (a low-level view). Additionally, Con-
TraPh combines the strengths of Transformers and Graph
Neural Networks to learn from these views, enabling it to
capture features across diverse levels and representations.

In summary, this paper makes the following contributions:
• A novel multi-view learning approach that integrates
Transformers and Graph Neural Networks to capture
both high-level features from source code and low-
level features from compiler intermediate representa-
tions.

• The application of the proposed method to identify
optimal configurations for parallelization and perfor-
mance optimization in computational tasks, support-
ing a wide range of configuration types across CPUs
and GPUs.

• Generalization of the method across multiple parallel
programming models, including OpenMP, OpenACC,
and OpenCL.

• Introduction of two novel downstream tasks, Reduc-
tion and Scheduling Style Prediction, in addition to
four other downstream tasks to demonstrate the exten-
sibility of the method to diverse parallelization tasks.

• Integration of the proposed method with third-party
tools, such as large language models (LLMs), leading to
a 15% improvement in GPT-4’s parallel code generation
as measured by CodeBERTScore.

2 Methodology

In this section, we present the methodology for developing
ConTraPh. The entire workflow is illustrated in Figure 1. Six
commonly used clauses: private, reduction, lastprivate,
firstprivate, simd, and target, along with their combi-
nations are considered in this study, as these are generally
effective for parallelizing most loops. For loops that cannot
be parallelized, we assign the label ‘none’, indicating they
are not suitable for parallel execution.

2.1 Dataset Preprocessing

For pre-training, we utilize the OMP_Serial dataset [8] to
some extent. However, since this dataset only contains private
and reduction clauses, we augmented it with additional par-
allel configurations, such as lastprivate, firstprivate,
simd, target, and combinations of these clauses. To enhance
the dataset, we extracted code containing the mentioned
clauses from well-established GitHub repositories and HPC
benchmarks. To ensure the quality of the dataset, we em-
ployed GitRank [15] to rank the repositories, considering
only those with an overall score above 50.0. Each source
code is included in our dataset only if it is compilable, as
we use both LLVM IR and source code representations for
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Figure 1: Overview of the ConTraPh workflow.

ConTraPh, and obtaining LLVM IR requires successful com-
pilation.

To improve the dataset’s quality, each source code is pro-
cessed using two parallelism assistant tools: AutoPar [27]
(Static Analyzer) and DiscoPoP [20] (Dynamic Analyzer),
to verify the correctness of the parallel configurations. The
source code that passes these filters is then prepared for
pre-training. Specifically, loops deemed suitable for paral-
lelization, along with their associated clauses, are extracted
for contrastive pre-training. Lastly, the LLVM Intermediate
Representations (IRs) of the extracted loops are obtained.

Finally, a set of transformation flags [3] from LLVM is ap-
plied to the IRs to enhance the dataset, following the method-
ology outlined in [36]. For evaluation, we use source codes
from the AutoParBench suite [25], EPCC Benchmark [17],
and PolyBench-OpenACC Benchmark [12]. To ensure the
integrity of our test set, we carefully excluded any code from
these repositories during the training phase. The resulting
dataset comprises approximately 700 source files, fromwhich
1,517 loops were extracted. After applying the transforma-
tion flags, we generated roughly 30,000 IR files to pre-train

ConTraPh. Of these, 10% were reserved for validating the
contrastive pre-training pipeline.

2.2 Generating Program Representation

and Embedding

ConTraPh leverages both textual and graph-based represen-
tations of programs, as illustrated in Figure 2. The textual rep-
resentation enables the model to capture the syntactical and
semantic characteristics of source programs. Meanwhile, the
graph-based representation explicitly exposes various flows,
such as control, data, and call flows. Capturing these depen-
dencies is extremely beneficial for program optimization and
parallelization, as demonstrated in the results section.

2.2.1 Textual Representation and Text Encoder. As outlined
in the section 2.1, the textual representation includes the
loop along with its parallel configurations. For encoding,
we utilize the CodeBERT model [41] to generate embedding
vectors. The default CodeBERT configuration in PyTorch
is employed, with a maximum input length of 512 tokens.
Text inputs shorter than this length are padded to complete
the sequence. To enhance the model’s understanding, token
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Figure 2: Muti-view code representation with graph

and text.

weights are assigned, emphasizing specific tokens. For each
loop, higher weights are allocated to tokens that represents
the parallel constructs (e.g., ’private’, ’reduction’, ’simd’
etc.) to highlight the parallel configurations. The final text
embedding is derived by combining the weighted tokens
with the embeddings produced by CodeBERT.

2.2.2 Graph Representation and Graph Encoder. For each
loop, we have the corresponding IR. To derive a graph repre-
sentation from the IR, we utilize the state-of-the-art IR-based
program representation, PerfoGraph[35]. This representa-
tion integrates control flow, call flow, and data flow. Per-
foGraph has proven effective in prior applications such as
parallelism detection and parallel pattern recognition [35],
making it an ideal choice for modeling parallel programs.

PerfoGraph contains mainly three types of nodes: Con-
trol, Variable, and Constant. Control nodes represent the in-
structions in IR statements and Variable and Constant nodes
represent the variables and constants associated with those
instructions in IR statements. PerfoGraph uses three types
of edges: Control flow edges, Call flow edges, and Data flow
edges to model the relationship across different nodes in
the program graph. For encoding and generating embed-
ding vectors for the graph representation of programs, we
use Heterogeneous Graph Neural Networks (HGNNs). Het-
erogeneous Graph Neural Networks (HGNNs) can support
modeling different types of nodes and edges, and Perfo-
Graph also has multiple types of nodes and edges. A Gated
Attention Network (GAT) [38] is employed for modeling
the relationships among different elements of the program
graph with 3 GATConv layers based on PyTorch. GATs are
helpful as they allow for assigning different weights to dif-
ferent nodes in a neighborhood. This suits our problem since
we also assign different weights to different tokens in the
program graph.
To generate embedding for the PerfoGraph representa-

tion of a loop, first, the embedding of each node in the Perfo-
Graph representation is obtained using PyTorch learnable
embeddings. A pooling is applied to combine the embed-
dings of each node type. For the pooling operator, we use the
PyTorch-based global_mean_pool function. After obtaining
the embeddings for each node type we concatenate them
together to obtain the final embedding of the entire graph.

2.2.3 Applying Projection. After embedding text and graph,
there is a projection step. Contrastive training and loss re-
quire the embedding of two views to be the same. The projec-
tion step ensures this requirement. In fact, projection passes
the embeddings of both text and graph through a linear trans-
formation layer to obtain the same-sized embedding vectors
for both views. The projection vector size is set to 128 in
this study, meaning the length of text embedding and graph
embedding would be 128 for a particular loop.

2.3 Contrastive Pre-training

2.3.1 Designing the Positive and Negative Samples. Contrastive
learning is particularly suited for tasks that involve clus-
tering similar samples (positive samples) while separating
dissimilar ones (negative samples). This capability enables
the model to align text and graph representations effectively,
allowing it to learn from both. A crucial step in applying
contrastive learning is constructing the positive and neg-
ative samples for each data point, where each data point
represents a single loop. Each loop can be parallelized using
various parallel constructs, though not all configurations are
optimal or correct. The positive and negative samples are,
therefore, designed to guide the model in identifying the
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most suitable configurations for parallelizing a given loop
while avoiding suboptimal or incorrect ones.

• Positive Samples: The parallel constructs the developer
originally added are considered as the positive samples.

• Negative Samples: The negative samples represent all
incorrect configurations for a particular loop. The neg-
ative samples are found by generating all combinations
of six clauses and then excluding the correct configu-
ration from the set.

For example, if the correct OpenMP configuration for a par-
ticular loop is #pragma omp parallel for private(var)
reduction(op: var), then the positive sample will contain
the correct OpenMP configuration, and all other configu-
rations like #pragma omp parallel for private(var),
#pragma omp parallel for private(var) lastprivate(var)
etc. are considered as the negative samples.

2.3.2 Designing Contrastive Loss Function. The goal of con-
trastive pre-training is to enable the model to generate simi-
lar vector representations for a loop with a correct parallel
configuration and the IR of that loop. When this occurs, the
Euclidean distance between the two representations will be
small, indicating that a potential correct parallel configu-
ration has been found for that loop. We use the projected
graph and text embeddings for calculating the contrastive
loss. As we employ a distance-based approach for measuring
the contrastive loss, instead of using the standard contrastive
learning objective, we employ a modified version, which is
known as mean-shifted contrastive (MSC) loss function as
described in [28]. It maximizes the distance between posi-
tive and negative samples, hence, helps ConTraPh to learn
which configurations are better (positive samples) for a par-
ticular loop and which need to be avoided (negative samples).
First, we have the projected and normalized graph and text
embedding vectors 𝑡𝑥𝑡𝑣 and 𝑔𝑟𝑝𝑣 of size (𝐵, 𝐷) where B is
the batch size and D represents the number of elements in
each vector. We concatenate these two vectors and construct
𝑜𝑢𝑡 where,

𝑜𝑢𝑡 = 𝑡𝑥𝑡𝑣 ⊕ 𝑔𝑟𝑝𝑣

Here 𝑜𝑢𝑡 is of shape (2𝐵, 𝐷). Then, we compute the similarity
matrix:

𝑠𝑖𝑚_𝑚𝑎𝑡𝑟𝑖𝑥𝑖 𝑗 = exp

(∑𝐷
𝑘=1 𝑜𝑢𝑡𝑖𝑘 ⊙ 𝑜𝑢𝑡 𝑗𝑘

𝑡𝑒𝑚𝑝

)
Here ⊙ represents dot product between vectors and 𝑖, 𝑗 =

1, 2, 3, . . . , 2𝐵. Hence, 𝑠𝑖𝑚_𝑚𝑎𝑡𝑟𝑖𝑥𝑖 𝑗 is of size (2𝐵, 2𝐵). 𝑠𝑖𝑚_𝑚𝑎𝑡𝑟𝑖𝑥𝑖 𝑗
computes a full similarity matrix that considers all possible
pairs of vectors, including both text-text vectors (within
group pairs) and graph-text vectors (cross-group pairs). We

calculate the positive similarity between corresponding vec-
tors 𝑡𝑥𝑡𝑣 and 𝑔𝑟𝑝𝑣 using the following:

𝑝𝑜𝑠_𝑠𝑖𝑚𝑖 = exp

(∑𝐷
𝑗=1 𝑡𝑥𝑡𝑣𝑖 𝑗 ⊙ 𝑔𝑟𝑝𝑣𝑖 𝑗

𝑡𝑒𝑚𝑝

)
Here 𝑖 = 1, 2, 3, . . . , 𝐵. The output 𝑝𝑜𝑠_𝑠𝑖𝑚 is a 1𝐷 vector
of size 𝐵 where each element corresponds to the similar-
ity score of a pair of corresponding vectors from 𝑡𝑥𝑡𝑣 and
𝑔𝑟𝑝𝑣 . Then, we concatenate the 𝑝𝑜𝑠_𝑠𝑖𝑚 with itself, effec-
tively doubling its size to 2𝐵. This concatenation ensures
that the positive similarities align with their corresponding
entries in the 𝑠𝑖𝑚_𝑚𝑎𝑡𝑟𝑖𝑥 . This helps in the calculation of
the loss function as it compares the positive similarity scores
(‘𝑝𝑜𝑠_𝑠𝑖𝑚’) against all other similarities in the ‘𝑠𝑖𝑚_𝑚𝑎𝑡𝑟𝑖𝑥 ’.
Finally, the loss is calculated as the mean of the negative log
of the ratio between the positive similarity and the sum of all
other similarities using the following formula, encouraging
the model to make the positive pairs more similar relative to
other pairs in the batch.

𝑙𝑜𝑠𝑠 = − 1
2𝐵

2𝐵∑︁
𝑖=1

log

(
𝑝𝑜𝑠_𝑠𝑖𝑚𝑖∑2𝐵

𝑗=1 𝑠𝑖𝑚_𝑚𝑎𝑡𝑟𝑖𝑥𝑖 𝑗

)
We adapt the PyTorch implementation of MSC loss in

ConTraPh. The Adam optimizer is used for the training
and the learning rate is set to 0.001. We set the batch size
to 100, and the dimension of each vector is chosen as 𝐷 =

120. We empirically choose a relatively low value of 𝑡𝑒𝑚𝑝 =

0.25 to sharpen the contrast between positive and negative
pairs, making the model more effective at learning distinct
representations. The model is trained for 600 epochs, and the
checkpoint with the least loss is saved for later use. The total
training time for the model is two days, 4 hours, 47 minutes,
and 36 seconds. Figure 3 shows the epoch vs. loss curve for
the pre-training process.

Figure 3: Epoch vs loss for Contrastive Pre-training
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2.4 Validating the Pre-trained Model

We first generate the text embedding vector with all parallel
configurations using our pre-trained model to predict par-
allel configurations for a particular loop. Then, the graph
embedding vector is generated using the IR-based Perfo-
Graph representation of that loop using the same model. We
calculate the Euclidean distance between the generated text
embedding vectors and the graph embedding vector (Figure
1.b). Then, a ranking based on the distance of the parallel
configurations for that particular loop is generated.

The ranking is created in an increasing order meaning the
parallel configuration that is at least distance from the loop
is at the top of the ranking. We choose the parallel configu-
ration that is at the top of the ranking as this configuration
represents the most optimal configuration for the loop. Ta-
ble 1 represents the results for the validation set, which has
around 3k IR files. The individual accuracies of the parallel
clauses are obtained by checking if the top-ranked parallel
configuration matches exactly with the ground-truth values
obtained from developers.

Table 1: Parallel clause detection accuracy of Con-

TraPh on the validation set

Clause Detection Accuracy

private 0.9879
reduction 0.9388
firstprivate 0.9412
lastprivate 1.0000

simd 0.9313
target 0.9224
none 1.0000

Overall Accuracy 0.9602

3 Results and Experiments

ConTraPh is evaluated against 6 downstream tasks related
to performance optimization and parallelization. In addition,
we integrate ConTraPh with third-party LLMs and demon-
strate that it can also help enhance the performance of these
models. In this section, we discuss the results of the down-
stream tasks. For all experiments, we used computing nodes
with the same configurations: two NVIDIA Tesla V100-32GB
GPUs and two 18-core Intel Skylake 6140 CPUs.

3.1 Predicting OpenMP Configuration for

CPU-based Parallelism

For this task, ConTraPh is responsible for detecting the
OpenMP configuration given a particular loop. This task is fo-
cused on detecting CPU-based parallelism opportunities, so
only theOpenMP clauses private, reduction, firstprivate,
lastprivate, and a combination of them are considered.
The pre-trained ConTraPh model is used for experiments.

The test set is created from the AutoParBench repository. It
contains three benchmark applications: NAS Parallel Bench-
mark (NPB) [16], Rodinia [6], and Dataracebench [21] along
with the OpenMP configurations from expert developers,
which are considered as ground-truth values. Therefore, the
results from ConTraPh can be compared to these ground-
truth values. NPB has eight applications, and 90 loops ( BT: 7,
IS: 6, CG: 10, FT: 5, EP: 6, LU: 13, MG: 15, and SP: 28 ) are ex-
tracted from these applications. From 4 Rodinia Benchmark
applications total of 21 loops (BFS: 1, B+ Tree: 6, Heartwall:
13 and 3D: 1) are extracted. Then, 34 loops are extracted
from the DataRaceBench benchmark. So, around 145 loops
are extracted in total. Each loop can have multiple OpenMP
clauses. We show the details of the different types of clauses
in Table 2.

Table 2: Different OpenMP clauses extracted from Au-

toParBench

OpenMP Clause Number samples in test set

private 117
reduction 61
firstprivate 46
lastprivate 14

none (non-parallel) 12
Total clauses 250

Original Config:
#pragma omp parallel for private (m)  
firstprivate (dtpp)
Loop:

for (m = 1; m <= 4; m += 1) {
buf[j][m] = dtpp * dtemp[m];

}

Original Config:
#pragma omp parallel for private (ib,ia) 
reduction (+:s) firstprivate (ip1)
Loop:
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + private.d_tMask[public.tMask_rows * 

(ja - 1) + ia - 1] * 1;
}

(a) Extracted from BT (NAS) (b) Extracted from HeartWall (Rodinia)

Rank Config Distance
1 private firstprivate 31.4702
2 private 31.6173
3 none 31.6541

Rank Config Distance
1 private reduction firstprivate 29.5788
2 private reduction 29.5964
3 private firstprivate 29.6459

Rank Generated by ConTraPh Rank Generated by ConTraPh

Original Config: 
none

Loop:
for (i = 0; i <= len - 1 - 1; i += 1) {

a[i] = a[i + 1] + 1;
}

Original Config:
#pragma omp parallel for private (i)
lastprivate (x)
Loop:
for (i = 0; i <= 99; i += 1) {

x = i;
}

(c) Extracted from DataRaceBench (d) Extracted from DataRaceBench

Rank Config Distance
1 none 12.4194
2 private firstprivate 12.5081
3 private reduction firstprivate 12.7911

Rank Config Distance
1 private lastprivate 14.7845
2 private firstprivate 14.7974
3 private 14.9381

Rank Generated by ConTraPh Rank Generated by ConTraPh

Figure 4: Illustration of the output of ConTraPh. For

each loop, the output configuration is shown up to 3

ranks. For generating the results in Table 3 only the

Rank-1 configurations are used
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Table 3: Comparing OpenMP clause detection accuracy across different models

Model

OpenMP Clause Detection Accuracy

Overall accuracy

private reduction firstprivate lastprivate none (Non-parallel)

Pragformer 0.7312 0.7219 N/A N/A 0.5833 0.6788
Graph2Par 0.7944 0.7839 N/A N/A 0.6667 0.7483
PrograML 0.8765 0.8329 N/A N/A 0.75 0.8198
PerfoGraph 0.9001 0.8776 N/A N/A 0.75 0.8426
AutoParLLM 0.9004 0.8785 N/A N/A 0.8333 0.8707
ConTraPh 0.9829 0.9344 0.9565 1.0 0.9167 0.9581

Table 4: Comparing performance of ConTraPh with other approaches on Reduction Style prediction task. OS =

‘Oracle Speedup’.

Model

Reduction Styles

Overall accuracy Speeedup (OS = 17.49X)precision recall f1-score

Atomic Clause Critical Atomic Clause Critical Atomic Clause Critical

PrograML 0.50 1.0 0.83 0.83 0.57 0.71 0.62 0.73 0.77 0.70 3.25x
PerfoGraph 0.60 0.88 0.71 0.50 0.78 1.0 0.55 0.82 0.83 0.75 7.62x
AutoParLLM 0.67 0.67 1.0 0.89 0.67 0.62 0.76 0.67 0.77 0.75 8.21x
ConTraPh 0.80 0.67 1.0 0.89 0.67 0.88 0.84 0.67 0.93 0.85 13.51x

For generating the results with ConTraPh, we first ex-
tract all the loops and their associated OpenMP clauses.
Since ConTraPh is designed to predict OpenMP config-
urations, we remove the existing configurations from the
loops. Next, we generate the IR representation for each
loop. From this IR, we also produce the PerfoGraph repre-
sentation. The input to ConTraPh consists of the sequen-
tial loop without the OpenMP clause and its correspond-
ing program graph (PerfoGraph) representation. Based
on these inputs, ConTraPh ranks the OpenMP configu-
rations according to distance, as described in section 2.4.
The top-ranked OpenMP configuration is then selected as
ConTraPh’s prediction. Table 3 presents the results. We
obtained open-source model checkpoints for PragFormer,
Graph2Par, ProGraML, PerfoGraph, and AutoParLLM for
comparison and applied these pre-trained models to our test
set of 250 loops. However, none of these models account for
firstprivate and lastprivate OpenMP clauses, so they
are marked as N/A in the table.
As shown in Table 3, ConTraPh achieves up to 7% bet-

ter accuracy than the state-of-the-art models. Additionally,
Figure 4 illustrates how rankings are generated for the differ-
ent OpenMP configurations. Although we display up to the
Rank-3 configurations in Figure 4, ConTraPh only selects
the top-ranked configuration as the final output. Figure 4
illustrates the capability of ConTraPh to generate correct
OpenMP configurations involving multiple OpenMP clauses
(Figure 4(a, b, d)). It illustrates the capability of ConTraPh to
detect non-parallel loops (Figure 4(c)). It is observable from
Figure 4 that all Rank-1 configurations predicted by Con-
TraPh match with the developer’s version (Original Config)
of the OpenMP configuration.

3.2 Predicting Performant Coding Styles

(Reduction)

For the previous task, ConTraPh was evaluated on the
OpenMP clause prediction task. However, a single clause can
be applied in multiple ways, potentially affecting the perfor-
mance of programs differently, as shown in the study by [23].
Therefore, in this downstream task, we evaluate ConTraPh
on detecting the most performant coding styles that involve
the OpenMP clause reduction. Specifically, We consider
three ways to implement a parallel loop with reduction
clause: i) Atomic, ii) critical and iii) clause based reduc-
tion as discussed by authors of [23].
For evaluating ConTraPh on detecting performant re-

duction styles, we use the dataset from [23]. This dataset
contains 60 source files, each with the throughput of all three
reduction styles. By applying LLVM transformation flags,
we increase the sample size to 200 (85 atomic, 62 clause,
53 critical). The programs include graph algorithms like
BFS, Single Source Shortest Path, Connected Components,
etc. Throughputs are calculated using Equation 1, which
measures the number of edges processed per microsecond.

Throughput =
# of edges processed

runtime in seconds × 1000000.0
(1)

For a particular program with a given input, the number
of processed edges will be the same. From Equation 1, we
observe that throughput is inversely proportional to runtime.
Therefore, higher throughput corresponds to reduced run-
time, indicating a speedup in the program. As a result, it is
reasonable to assume that increasing throughput is equiva-
lent to achieving speedup. We use this throughput to create
a labeled dataset for the three reduction styles and apply
Equation 1 to calculate the speedup gain in our results. For
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Table 5: Comparing performance of ConTraPh with other approaches on Scheduling Style prediction task. OS =

‘Oracle Speedup’.

Model

Scheduling Styles

Overall accuracy Speeedup (OS = 21.25X)precision recall f1-score

static dynamic static dynamic static dynamic

PrograML 0.67 0.87 0.86 0.67 0.75 0.76 0.76 4.19x
PerfoGraph 0.78 0.81 0.84 0.73 0.81 0.77 0.79 6.21x
AutoParLLM 0.82 0.84 0.87 0.78 0.84 0.81 0.83 11.02x
ConTraPh 0.88 0.92 0.93 0.85 0.90 0.89 0.90 18.96x

comparing ConTraPhwith other models regarding speedup,
we use the concept of ‘Oracle Speedup’. ‘Oracle Speedup’
is obtained when a model always selects the best runtime
for a program. For each program, the best-performing reduc-
tion style (i.e., the reduction configuration with the highest
throughput) is assigned as the label for that program. The
task then becomes predicting which of the three reduction
styles will provide the best throughput for a given program
using ConTraPh. Note that ConTraPh has already been
pre-trained on different OpenMP clauses. In this phase, we
fine-tune ConTraPh using this reduction style dataset.
We keep 10% (8 atomic, 6 clause, 6 critical) of the

dataset for testing, with the remaining data used for fine-
tuning. The goal of the fine-tuning remains the same: to
enable the model to generate similar vector representations
given a loop with a correct OpenMP configuration and the
IR of that loop. This will result in less Euclidean distance
between vectors, indicating that a possible correct OpenMP
configuration is found for that loop. The only difference
here is that, instead of using all OpenMP configurations, we
focus exclusively on the three reduction styles as our tar-
get OpenMP configurations. The inference phase remains
identical. For predicting the best reduction style for a partic-
ular loop, we first generate the text embedding vectors for
all reduction styles using the fine-tuned ConTraPh model.
Then, the graph embedding vector is generated using the
IR-based PerfoGraph representation of that loop, also with
the fine-tuned model. The generated text embedding vec-
tors are then compared with the graph embedding vector to
calculate the Euclidean distance. A ranking is generated for
the reduction styles where the style with the least distance
is at the top, and the top-ranked reduction configuration
is selected as the output of ConTraPh. To the best of our
knowledge, we are the first to apply a Contrastive Learning
method to predict the most performant reduction style for
a particular loop. No previous work has attempted to solve
this problem in an autonomous manner, making it difficult
to compare ConTraPh’s performance directly with other
methodologies. However, because the detailed implemen-
tations of PrograML, PerfoGraph, and AutoParLLM were
available, we were able to compare ConTraPh with these
three approaches. Table 4 shows the results.

As shown in the Table 4, ConTraPh achieves up to 10%
better accuracy than the current best Deep Learning ap-
proaches for parallelization discovery and performance op-
timization tasks, such as PrograML and PerfoGraph. Pro-
graML uses a GGNN as its core model architecture, whereas
both PerfoGraph and AutoParLLM use RGCN as its core
model with a Cross-entropy-based loss function. All three ar-
chitectures use only LLVM IR-based representation of source
programs. In contrast, ConTraPh leverages both LLVM IR-
based graph and textual representation of source code, em-
ploys MSC-based contrastive loss, and uses Gated Atten-
tion Networks (GATs) in its model architecture. ConTraPh
also achieves the highest speedup (13.51X) than all other
SOTA models, and it is very close to the ‘Oracle Speedup’
of 17.49X.

3.3 Predicting Performant Coding Styles

(Scheduling)

Like the reduction clause, the schedule clause in OpenMP
also has different styles or configurations. In OpenMP, a
loop can be parallelized using the static scheduling, which
assigns a certain chunk of loop iterations to each of the
threads statically. Alternatively, dynamic scheduling is avail-
able, where chunks of iterations are assigned to threads at
runtime. These different scheduling configurations can sig-
nificantly impact program performance.
In this downstream task, we evaluate ConTraPh on de-

tecting the most performant coding styles involving the
OpenMP clause schedule. Specifically, we focus on two
types of scheduling: i)static and ii)dynamic. To evaluate
ConTraPh, we utilize the dataset from [23], which contains
167 source files, each annotated with runtime information for
both static and dynamic scheduling. Similar to the previ-
ous task, we use this runtime information to create a labeled
dataset for the two scheduling types. Additionally, LLVM
transformation flags are applied to increase the dataset size
to 855 samples (430 static, 425 dynamic). The task is to
predict, given a program, whether static or dynamic sched-
uling will provide the best runtime. We further fine-tune
ConTraPh using this scheduling style dataset; 10% (45 static,
41 dynamic) of the dataset is reserved for testing, and the re-
mainder is used for fine-tuning. The goal of the fine-tuning
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remains the same as the reduction style detection model,
with the only difference being that instead of detecting three
reduction styles, we now target the two scheduling styles as
our OpenMP configuration.
During inference, to predict the best scheduling options

for a particular loop, we first generate text embedding vector
for both scheduling styles using the fine-tuned ConTraPh
model. Then, the graph embedding vector is generated using
the IR-based PerfoGraph representation of that loop with
the same fine-tuned model. Then we use the same method-
ology as described earlier to create a ranking for the dif-
ferent scheduling styles for a particular loop based on the
euclidean distance among the generated vectors. To the best
of our knowledge, this is the first work that addresses au-
tomatic scheduling style prediction using a Deep Learning
approach. However, having access to the training models
of PrograML, PerfoGraph, and AutoParLLM allowed us to
compare ConTraPh with these three approaches. Table 5
shows the results.
We observe that ConTraPh achieves up to 7% higher

accuracy compared to the current best Deep Learning ap-
proaches, such as PrograML and PerfoGraph, which have
been previously applied to parallelization and performance
optimization tasks, including parallelism discovery, paral-
lel pattern detection, and device mapping. Also, ConTraPh
achieves better speedup (18.96X) than other SOTA models,
and the achieved speedup is also very close to the ‘Oracle
Speedup’ of 21.25X.

3.4 CPU vs GPU Parallelism

OpenMP allows for CPU-based parallelism using simd clause
and GPU-based parallelism using the target clause. Some
programs may benefit more by CPU-based parallelism using
loop vectorization, while others, particularly those involving
data-intensive computations, may benefit more from GPU
offloading. However, like other OpenMP configurations, de-
termining the most suitable configuration often requires
careful inspection of source programs and program execu-
tion, which can be daunting and computationally expensive,
especially for programs with long execution times.
In this task, we use ConTraPh to automatically distin-

guish between source programs that are better suited for
parallelization using CPU and GPU. Given a loop, the goal is
to predict whether that program should be parallelized using
OpenMP simd or target directive. As there is currently no
such dataset available, we turn to the open-source reposito-
ries and benchmarks, only considering repositories with an
overall_score over 50.0, calculated using GitRank, as men-
tioned earlier. Additionally, we only consider programs that
are both compileable and executable. Since OpenMP anno-
tations in open-source repositories can often contain noisy

samples, we executed each program five times and collected
the execution times for both simd and target configurations
in OpenMP. We labeled a program as a simd program if its
average runtime using the simd directive was less than its av-
erage runtime using the target clause. Similarly, we labeled
loops that performed better with the target directive. After
preprocessing and applying LLVM IR-based transformations,
we obtain 1,612 (1,207 simd, 405 target) loops. We use around
10% (112 simd, 47 target) of the data for testing ConTraPh.
For inference, as described earlier, the text embeddings for
the two configurations are generated using ConTraPh and
compared with the graph embedding of a particular code
and ranking is generated based on the euclidean distance.

For this task, we compared ConTraPh with recent works
such as PrograML, PerfoGraph, and AutoParLLM, as these
models address similar problems like CPU/GPU device map-
ping and parallelization pattern detection. The results are
presented in Table 6. We observe that PerfoGraph and Au-
toParLLM have very similar performances likely due to their
similar GNN architectures and program representations. Au-
toParLLM, in fact, uses PerfoGraph to model the flows in
programs, which is one of the core components of its archi-
tecture. Both PerfoGraph and AutoParLLM have a slight
advantage over PrograML, which also uses the IR represen-
tation as the other two models. However, PrograML does not
have performance-specific optimizations in the IR-based pro-
gram graphs like PerfoGraph and AutoParLLM. We believe
that this is the main reason for PrograML achieving lower
accuracies in most downstream tasks than PerfoGraph and
AutoParLLM.

However, ConTraPh achieves better results than these
models. In this task as well, ConTraPh demonstrates 4%
higher accuracy in predicting the appropriate use of simd
and target clauses compared to the best-performing models.
Also, ConTraPh achieves the best speedup (14.58X) among
other models, and the achieved speedup is extremely close
to the ‘Oracle Speedup’ of 16.15X.

3.5 Complete OpenMP Clause Generation

Here, we demonstrate how ConTraPh can be integrated
with third-party tools like LLMs to enhance autonomous
parallelization and program optimization. To showcase the
usefulness of ConTraPh, we selected the OpenMP clause
generation task. In this take, given a loop, the objective is
to automatically generate the complete OpenMP clauses re-
quired to parallelize the loop. ConTraPh is capable of gener-
ating suitable OpenMP clauses such as private, reduction,
firstprivate, lastprivate, or combinations of these clauses.
However, ConTraPh does not generate the variables and op-
erators associatedwith these clauses. private, firstprivate,
lastprivate clause contains variables list associated with
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Table 6: Comparing performance of ConTraPh with other approaches on CPU and GPU based parallelization. OS

= ‘Oracle Speedup’

Model

CPU/GPU configurations

Overall accuracy Speeedup (OS = 16.15X)precision recall f1-score

simd target simd target simd target

PrograML 0.90 1.00 1.00 0.58 0.95 0.73 0.91 6.67x
PerfoGraph 0.91 1.00 1.00 0.70 0.95 0.82 0.92 9.82x
AutoParLLM 0.91 1.00 1.00 0.69 0.95 0.82 0.92 10.09x
ConTraPh 0.95 1.00 1.00 0.82 0.98 0.90 0.96 14.58x

“ Parallellize the following loop with OpenMP
{Loop text here}    ”

“ Parallellize the following loop with OpenMP using 
clauses

{OpenMP clauses predicted from ConTraPh here}
{Loop text here}    ”

(a)

(b)

Figure 5: (a) Shows the prompts without integrating

the results from ConTraPh. (b) Shows the prompts

after integrating the results from ConTraPh.

them (e.g., private(i, j)), and reduction clause is as-
sociated with both variables and reduction operators (e.g.,
reduction(+:sum)). In this task, we employ LLMs to auto-
matically generate these elements of OpenMP clauses using
the predictions from ConTraPh. Specifially, we extracted
60 loops containing OpenMP clauses from AutoParBench,
which includes three benchmarks: NPB, Dataracebench, and
Rodinia. For each loop, we generated the OpenMP configura-
tions using ConTraPh following the methodology discussed
in section 3.1. These predictions are then incorporated into
the prompt for the LLMs. The prompt instructs the LLM
to parallelize the loop using the OpenMP clauses predicted
by ConTraPh. The input to the LLM consists of the loop
text and the OpenMP clauses predicted by ConTraPh. We
found that integrating ConTraPh predictions with LLMs sig-
nificantly enhanced the LLMs’ ability to generate complete
OpenMP clauses. To illustrate the impact of ConTraPh on
LLMs, we design two types of prompts: i) withoutConTraPh
predictions (Figure 5.a) and ii) with ConTraPh predictions
(Figure 5.b). LLMs are invoked with both types of prompts.
From the generated responses, we compare the generated
OpenMP clauses with the ground-truth values from bench-
marks. To evaluate the quality of the generated OpenMP
clauses, we used well-known text-generation metrics such as
BLEU [26] and ROUGE-L [22], and also code-specific evalua-
tion metrics, including CodeBLEU [29] and CodeBERTScore
[41]. The results are reported in Table 7. We can observe
that, ConTraPh helps to improve the performance of the

most powerful LLM to date, GPT-4, by 15% in terms of Code-
BERTScore. The contrastive learning-based prompting helps
the LLMs to have some background information before gen-
erating the OpenMP clauses. It helps in its reasoning, which
leads to better results. Figure 6 shows the effects of Con-
TraPh on GPT4 and Gemini-Pro output.

Table 7: Comparing OpenMP clause generation results

using third-party LLMs. (A higher score indicates a

closer match with ground truth and a score of 100 in-

dicates a perfect match)

Model BLEU Rogue-L CodeBLEU CodeBERTScore

GPT-3.5 [1] 34.02 52.85 48.96 79.0
ConTraPh-GPT-3.5 63.91 92.53 68.25 96.2

GPT-4 [2] 39.29 58.68 53.31 81.0
ConTraPh-GPT-4 67.83 94.12 70.21 96.8

CodeLlama-34b [30] 30.00 52.00 50.48 77.6
ConTraPh-CodeLlama-34b 43.94 81.60 58.47 90.9

Gemini [34] 41.37 56.08 54.63 80.6
ConTraPh-Gemini 50.62 87.30 67.48 94.2

3.6 OpenACC Configuration Prediction

We also apply ConTraPh for detecting the proper parallel
configurations of another widely used parallel programming
framework: OpenACC. One of the reasons for choosing Ope-
nACC is because it offers almost all configurations that Con-
TraPh is pre-trained with, and also, there are benchmarks
with ground truth values which we can compare our re-
sults with. We considered two OpenACC benchmarks: EPCC
Benchmark [17] and PolyBench-OpenACC Benchmark [12].
Total 78 loops are extracted from the two benchmarks. We
found 4 different parallel configurations in these 78 extracted
loops: private: 31, firstprivate: 20, reduction: 15, and
12 loops that are not parallelizable. Loops that can not be par-
allelized are labeled as none. After extracting the loops, we
generate the IRs and then create the PerfoGraph representa-
tion of the loops. Then, we use the contrastively pre-trained
ConTraPh model (as introduced in Section 2.3 and 2.4) on
this dataset of 78 loops. The pre-trained ConTraPh takes as
input both the loop text and the PerfoGraph representation
to generate the configurations. Then, we incorporate the
ConTraPh-generated configurations into GPT-4 prompts
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#pragma omp parallel for private(i) 
lastprivate(x)
for (i = 0; i <= 99; i += 1) {

x = i;
}

#pragma omp parallel for private(i)
for (i = 0; i <= 99; i += 1) {

x = i;
}

#pragma omp parallel for private(i) 
lastprivate(x)
for (i = 0; i <= 99; i += 1) {

x = i;
}

#pragma omp parallel private (ib,ia) reduction 
(+:s) firstprivate (ip1)
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + 
private.d_tMask [ public.tMask_rows * 

(ja - 1) + ia – 1 ] * 1;
}

#pragma omp parallel for private(ib,ia)
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + 
private.d_tMask [ public.tMask_rows * 

(ja - 1) + ia – 1 ] * 1;
}

#pragma omp parallel for private(ib,ia) 
reduction (+:s) firstprivate (ip1)
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + 
private.d_tMask [ public.tMask_rows * 
(ja - 1) + ia – 1 ] * 1;

}

#pragma omp parallel for private (m) 
firstprivate (dtpp)
for (m = 1; m <= 4; m += 1) {

buf[j][m] = dtpp * dtemp[m];
}

#pragma omp parallel for private (m)
for (m = 1; m <= 4; m += 1) {

buf[j][m] = dtpp * dtemp[m];
}

#pragma omp parallel for private (m) 
firstprivate (dtpp)
for (m = 1; m <= 4; m += 1) {

buf[j][m] = dtpp * dtemp[m];
}

#pragma omp parallel for private(i) 
reduction(+:in_sqr_final_sum)
for (i = 0; i <= public . in_mod_elem - 1; i += 1) {

in_sqr_final_sum = in_sqr_final_sum + 
private . d_in_sqr[i];
}

#pragma omp parallel for private(i) 
for (i = 0; i <= public . in_mod_elem - 1; i += 1) {

in_sqr_final_sum = in_sqr_final_sum + 
private . d_in_sqr[i];
}

#pragma omp parallel for private(i) 
reduction(+:in_sqr_final_sum)
for (i = 0; i <= public . in_mod_elem - 1; i += 1) {

in_sqr_final_sum = in_sqr_final_sum + 
private . d_in_sqr[i];
}

Original Loop Output of LLM without ConTraPh Output of LLM with ConTraPh

GPT4 output

GPT4 output

Gemini-Pro output

Gemini-Pro output

ConTraPh-GPT4 output

ConTraPh-GPT4 output

ConTraPh-Gemini-Pro output

ConTraPh-Gemini-Pro output
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x = i;
}

#pragma omp parallel for private(i)
for (i = 0; i <= 99; i += 1) {

x = i;
}

#pragma omp parallel for private(i) 
lastprivate(x)
for (i = 0; i <= 99; i += 1) {

x = i;
}

#pragma omp parallel private (ib,ia) reduction 
(+:s) firstprivate (ip1)
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + 
private.d_tMask [ public.tMask_rows * 

(ja - 1) + ia – 1 ] * 1;
}

#pragma omp parallel for private(ib,ia)
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + 
private.d_tMask [ public.tMask_rows * 

(ja - 1) + ia – 1 ] * 1;
}

#pragma omp parallel for private(ib,ia) 
reduction (+:s) firstprivate (ip1)
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + 
private.d_tMask [ public.tMask_rows * 
(ja - 1) + ia – 1 ] * 1;

}

#pragma omp parallel for private (m) 
firstprivate (dtpp)
for (m = 1; m <= 4; m += 1) {

buf[j][m] = dtpp * dtemp[m];
}

#pragma omp parallel for private (m)
for (m = 1; m <= 4; m += 1) {

buf[j][m] = dtpp * dtemp[m];
}

#pragma omp parallel for private (m) 
firstprivate (dtpp)
for (m = 1; m <= 4; m += 1) {

buf[j][m] = dtpp * dtemp[m];
}

#pragma omp parallel for private(i) 
reduction(+:in_sqr_final_sum)
for (i = 0; i <= public . in_mod_elem - 1; i += 1) {

in_sqr_final_sum = in_sqr_final_sum + 
private . d_in_sqr[i];
}

#pragma omp parallel for private(i) 
for (i = 0; i <= public . in_mod_elem - 1; i += 1) {

in_sqr_final_sum = in_sqr_final_sum + 
private . d_in_sqr[i];
}

#pragma omp parallel for private(i) 
reduction(+:in_sqr_final_sum)
for (i = 0; i <= public . in_mod_elem - 1; i += 1) {

in_sqr_final_sum = in_sqr_final_sum + 
private . d_in_sqr[i];
}

Original Loop Output of LLM without ConTraPh Output of LLM with ConTraPh

GPT4 output

GPT4 output

Gemini-Pro output

Gemini-Pro output

ConTraPh-GPT4 output

ConTraPh-GPT4 output
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#pragma omp parallel for private(i) 
lastprivate(x)
for (i = 0; i <= 99; i += 1) {

x = i;
}

#pragma omp parallel for private(i)
for (i = 0; i <= 99; i += 1) {

x = i;
}

#pragma omp parallel for private(i) 
lastprivate(x)
for (i = 0; i <= 99; i += 1) {

x = i;
}

#pragma omp parallel private (ib,ia) reduction 
(+:s) firstprivate (ip1)
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + 
private.d_tMask [ public.tMask_rows * 

(ja - 1) + ia – 1 ] * 1;
}

#pragma omp parallel for private(ib,ia)
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + 
private.d_tMask [ public.tMask_rows * 

(ja - 1) + ia – 1 ] * 1;
}

#pragma omp parallel for private(ib,ia) 
reduction (+:s) firstprivate (ip1)
for (ia = ia1; ia <= ia2; ia += 1) {

ib = ip1 - ia;
s = s + 
private.d_tMask [ public.tMask_rows * 
(ja - 1) + ia – 1 ] * 1;

}

#pragma omp parallel for private (m) 
firstprivate (dtpp)
for (m = 1; m <= 4; m += 1) {

buf[j][m] = dtpp * dtemp[m];
}

#pragma omp parallel for private (m)
for (m = 1; m <= 4; m += 1) {

buf[j][m] = dtpp * dtemp[m];
}

#pragma omp parallel for private (m) 
firstprivate (dtpp)
for (m = 1; m <= 4; m += 1) {

buf[j][m] = dtpp * dtemp[m];
}

#pragma omp parallel for private(i) 
reduction(+:in_sqr_final_sum)
for (i = 0; i <= public . in_mod_elem - 1; i += 1) {

in_sqr_final_sum = in_sqr_final_sum + 
private . d_in_sqr[i];
}

#pragma omp parallel for private(i) 
for (i = 0; i <= public . in_mod_elem - 1; i += 1) {

in_sqr_final_sum = in_sqr_final_sum + 
private . d_in_sqr[i];
}

#pragma omp parallel for private(i) 
reduction(+:in_sqr_final_sum)
for (i = 0; i <= public . in_mod_elem - 1; i += 1) {
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ConTraPh-GPT4 output

ConTraPh-GPT4 output

ConTraPh-Gemini-Pro output

ConTraPh-Gemini-Pro output

Figure 6: The impact of ConTraPh on LLMs. The outputs of LLMs for OpenMP clauses improve significantly after

the integration of ConTraPh into LLMs.

and instruct GPT-4 to generate the complete OpenACC con-
figurations instead of OpenMP using the same procedure as
discussed in Section 3.5. As we are able to obtain the pre-
trained model checkpoints for PrograML, PerfoGraph, and
AutoParLLM;we comparewith these SOTA approaches. how-
ever, as none of the models support firstprivate, we list
them as N/A. From the results of Table 8, it can be observed
that ConTraPh achieves better results than all other SOTA
models, and it was able to detect all reduction and ’non-
parallel’ loops correctly. We also investigated the mistakes
made by ConTraPh and found that there are mismatches
regarding the private and firstprivate clauses for the
loop ‘for(i=0; i<n; i++) { arr[i] = y[i]; }’. Con-
TraPh correctly suggested the private clause on variable
i and firstprivate on the array variable y. However, the
loop counter i is by default private, and often developers
omit explicitly adding private clause on such cases. In this
case, as the developer did not add this in the benchmark it is
considered as a mismatch in our evaluation. And instead of
choosing firstprivate the developer choose the copyin
clause on variable y to make it shared among all the threads
in the accelerator device. As there is no write operation on
variable y, both configurations are correct and will not affect
the correctness of the program.

Table 8: Comparing performance of ConTraPh with

state-of-the-art models for OpenACC configuration

prediction

Model

OpenACC Clause Detection Accuracy

Overall Accuracy

private firstprivate reduction none

ProGraML 77.42 N/A 73.33 75.00 75.64
PerfoGraph 83.87 N/A 86.67 83.33 84.62
AutoParLLM 87.09 N/A 86.67 91.67 88.48
ConTraPh 96.77 95.00 1.00 1.00 97.44

3.7 Heterogeneous Device Mapping for

OpenCL Code

Previous tasks primarily focus on parallelization and optimiz-
ing code performance using different parallelization styles.
To assess how our approach performs on a different task, we
apply ConTraPh to the problem of predicting the appropri-
ate hardware configuration for a specific piece of code. For
this task, we use the dataset published in [10]. It contains 681
LLVM IRs extracted from 256 OpenCL kernels. Every data-
point contains the runtime information on one CPU (Intel
Core i7-3820, with 3.6 GHz frequency and 8GB memory) and
two GPUs (AMD Tahiti 7970, with 1000 MHz frequency, 3GB
memory, and NVIDIA GTX 970, with 1050 MHz frequency,
4GB memory). Based on these three hardware configura-
tions, two datasets are created: one considering the CPU
and AMD GPU and one considering the CPU and NVIDIA
GPU. 276 kernels show better performance in the AMD GPU,
while 395 kernels show better performance in the CPU. For
NVIDIA GPU, 385 kernels have better runtimes with GPU,
and 286 kernels have better runtimes with CPU. For each of
the datasets, the task for ConTraPh is: given an OpenCL
kernel, predict whether the kernel performs better on a CPU
or GPU. Here, we also use the pre-trained ConTraPh model
to generate the text and graph embedding vectors, and the
same distance-based ranking methodology is used to select
the best configuration. To compare with other studies, we
follow the same 10-fold validation in the fine-tuning phase.
At each step, we maintain a conventional data split: 80%
for fine-tuning, 10% for validation, and 10% for testing. At
each fold, the 10% test split is chosen uniquely so that a com-
plete prediction can be constructed over the whole dataset.
The results in Table 9 show that ConTraPh performs bet-
ter than state-of-the-art models in most cases. Specifically,
ConTraPh achieves state-of-the-art 95.52% accuracy in pre-
dicting the optimal device for program execution on the
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AMD dataset and near state-of-the-art 92.51% accuracy on
the NVIDIA dataset.

Following the studies of Grewe et al. [13], DeepTune [10]
and inst2vec [4], the baseline for speedup is considered to
be static mapping. Static mapping selects the device that has
the best average case performance across all programs in
the datasets. For the AMD dataset selecting the CPU yields
the best average performance and for the NVIDIA dataset
selecting the GPU results in the best average case perfor-
mance. The numbers reported in Table 9 represent speedups
over the static mapping baseline. It can be observed that
ConTraPh provides better speedup compared to all state-
of-the-art models.

Table 9: Comparing performance of ConTraPh with

state-of-the-art models for the task of Device Mapping

Model

Accuracy(%) Speedup(X)

AMD NVIDIA AMD NVIDIA

Grewe et al. 73.38 72.94 2.91 1.26
DeepTune 83.68 80.29 3.34 1.41
inst2vec 88.09 86.62 3.47 1.44
ProGraML 86.6 80.0 N/A N/A
PerfoGraph 94.0 90.0 N/A N/A
MIREncoder 93.6 93.7 N/A N/A
ConTraPh 95.52 92.51 4.44 1.76

4 Comparison with Traditional Tools

We also compared ConTraPh with two traditional program
analysis tools: AutoPar (static analyzer) and DiscoPoP (dy-
namic analyzer). We considered the task of detecting parallel
loops. We considered the SP application of NAS Parallel
Benchmark and extracted 40 loops. Here we employ our
ConTraPh to detect any possible parallel configuration for
a given loop. If ConTraPh finds any suitable configuration,
we consider thatConTraPh detected it as a parallel loop, oth-
erwise ConTraPh considers it is a non-parallel loop none.
We follow the same for AutoPar and DiscoPoP too. From
Table 10 it can be observed that ConTraPh detects more
parallel loops than both the traditional tools and it has sig-
nificantly less overhead than DiscoPoP. This is expected as
DiscoPoP is a dynamic analyzer and it executes the code to
generate results. The impact will be more severe for appli-
cations that require larger execution time as DiscoPoP will
need to execute programs, whereas ConTraPh will not be
affected that much as it does not need this step. Also, static
analyzer AutoPar takes slightly less time to generate results
but has much less accuracy than ConTraPh.

5 Correctness and Limitations

ConTraPh is designed as an intelligent assistant to aid users
in developing parallel programs but not as a replacement.
As any other learning-based model ConTraPh can make

Table 10: Comparing ParallelismDetectionAccuracy of

AutoPar, DiscoPoP andConTraPh on SP application of

NAS benchmark. In total, there are 40 loops. 25 Parallel

(P) and 15 Non-parallel (NP)

Tool Accuracy(%) Detected P loops Detected NP loops Time Taken

AutoPar 67.5% 12 15 235 milliseconds

DiscoPoP 80% 17 15 89600 milliseconds
ConTraPh 95% 23 15 315 milliseconds

mistakes. For the task described in Section 3.1 and 3.6, it
can suggest wrong parallel configurations and the user can
choose to accept or disregard the suggestions from Con-
TraPh. However, from the results, we believe it is fair to say
that as ConTraPh has very high accuracy (around 96%) in
most of the cases, the suggestions will be accurate, and it
will help users to write proper parallel codes with minimal
effort. Regarding tasks in Section 3.2, 3.3, 3.4, and 3.7 even
if ConTraPh suggests wrong configurations, it will only
lead to worse runtimes but not faulty programs. However, as
the performance of ConTraPh is also good in each of these
tasks, we believe it is fair to say that ConTraPh suggestions
most of the time will lead to optimized programs with better
runtimes.

6 Scalability Testing

We also perform scalability testing on the parallel configura-
tions predicted by ConTraPh. Eight applications (total of
90 loops as discussed in 3.1) of NAS Parallel Benchmark are
used for this experiment. First, the OpenMP configurations
suggested by ConTraPh are collected, and then complete
OpenMP clauses are generated by invoking the GPT-4 by
incorporating ConTraPh predictions in the prompt as dis-
cussed in Section 3.5. We compare with the ground-truth
parallel configurations, and if there is a mismatch, we use
the sequential version of the loop such that ConTraPh does
not gain any unfair advantage and also the correctness of
the program is preserved. Also, we verify that the outcome
matches with the original output for the applications paral-
lelized using ConTraPh. We use the ‘CLASS A’ input that
comes along with NPB for evaluating the applications. Each
application (both the sequential and parallelized versions)
is executed five times. Then, the speedup is calculated by
dividing the average sequential runtime by the average par-
allel runtime. Five thread configurations, 2, 4, 8, 16, and
32, are considered. Also, a computing node containing an
Intel Xeon Gold 6152 processor with 22 cores, 2.1 GHz of
Base Frequency (with max frequency up to 3.7 GHz), and
30.25 MB of L3 cache with DDR4 memory is used. Figure 7
shows that EP scales the best (achieves around 8X speedup)
as the application is ‘embarrassingly parallel’ and trivial to
scale. Applications like LU, FT, and BT are computationally
intensive and usually outweigh the thread communication
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overheads; hence, it can be observed that they scale up to 32
threads and achieve speedups up to 4.4X, 3.1X, and 2.7X, re-
spectively. All other applications also achieve speedup where
the minimum speedup gain is observed for SP (1.2X for four
threads). However, these applications (SP, IS, MG, CG) do not
scale well for higher thread counts as they involve frequent
inter-thread communication and synchronization. These op-
erations introduce significant overhead, thereby creating a
bottleneck that limits scalability.
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Figure 7: Scalability testing of NAS benchmark appli-

cations for the parallel configurations predicted by

ConTraPh.

7 Related Works

Pragformer [14] uses transformer-based [37] architecture for
identifying parallel patterns. It only considers 2 patterns and
uses source text of codes and ASTs for detecting parallelism.
Graph2Par [8] proposed augmented AST and GNNs for iden-
tifying different parallel patterns. There are also other works
like [31, 32] that use GNNs for identifying parallelism in
sequential programs. Authors of [31] used GCN along with
CFGs for identifying parallel regions in source code, whereas
authors of [32] used AST along with control and data flow for
the same problem. However, these works only consider iden-
tifying parallelizable code regions but do not generate any
suggestions regarding optimizations. MIREncoder [11] uses
ProGraML to model programs for performance optimization.
However, they use the regular GNNs with cross-entropy-
based loss as the basis for their learning model. Recently,
[35] proposed an IR-based fine grain program representation
PerfoGraph, which is tailored for performance optimization
tasks like parallelism discovery, parallel pattern detection etc.
PerfoGraph achieved SOTA results in several performance
optimization tasks. The works [18, 24] tried to tackle to prob-
lem of automatically generating parallel codes. However,

both of these works are only applicable to very few parallel
configurations, which results in bottlenecks in performance
improvement. Finetuning of LLMs is also performed in the
study of [7]; however, authors indicated that the accuracy
remained quite low for parallel configuration prediction.

There are some static (Pluto [5], Rose [27]) and Dynamic
analyzers (DiscoPoP [19]), which offer autonomous paral-
lelization, however, these traditional tools may miss a lot of
optimization opportunities and may also be computationally
expensive as pointed out by authors [8, 31, 32]. Most of the
above-mentioned works either focus on only detecting par-
allelizable sections in code or try to parallelize using very
limited parallel configurations. Also, none of the works ex-
plore the optimization opportunities that lie within different
parallel implementation styles of the same program.
There are some works that use contrastive learning for

different code-related tasks like code search and code vulner-
ability prediction. For example, Cocosoda [33] uses source
code and text query for code search, authors of [9] use drop-
out masks on value-flow graph embedding for generating
contrastive samples in programs for software vulnerabil-
ity prediction. Authors of [39] use contrastive learning on
source code and flattened AST pair for vulnerability predic-
tion. HELoC [40] only considers hierarchical AST along with
contrastive learning for code classification tasks. However,
none of these works combine high-level textual information
of source code with the fine-grained low-level Intermediate
Representation (LLVM-IR) of code for contrastive learning.
ConTraPh addresses this gap. To the best of our knowl-

edge, we are the first to propose an MSC loss-based con-
trastive learning approach using multi-view program repre-
sentation for performance optimization that supports a wide
range of parallel configurations and can optimize among
different parallel configurations. Our approach combines
contrastive learning with source codes and a more granular
IR-based program graph with data dependencies, data flow,
and explicit control flow constructs. This multi-view setup
enhances the model’s ability to capture complex program
semantics, supporting optimizations like parallelization and
instruction scheduling.

8 Conclusion and Future Work

In this paper, we propose ConTraPh, a contrastive learning-
based approach that learns by utilizing distance-based MSC
loss using multiple views of the same program. We eval-
uated ConTraPh on six parallelization and performance
optimization-related downstream tasks and demonstrated
that it surpasses the state-of-the-art models in almost all the
tasks. We also showed that ConTraPh is flexible and can be
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used to support different parallel programming models. Fu-
ture work will involve predicting more challenging optimiza-
tion configurations like optimal thread counts, Vectorization
Factor (VF), Interleaving Factor (IF) using ConTraPh.
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