
ORA: Job Runtime Prediction for High-Performance
Computing Platforms Using the Online
Retrieval-Augmented Language Model

Hongyi Liu
Peking University
Beijing, China

hongyiliu@pku.edu.cn

Yinping Ma∗
Peking University
Beijing, China

mayinping@pku.edu.cn

Xiaosong Huang
Peking University
Beijing, China

hxs@stu.pku.edu.cn

Lingzhe Zhang
Peking University
Beijing, China

zhang.lingzhe@stu.pku.edu.cn

Tong Jia
Peking University
Beijing, China

National Key Laboratory of Data
Space Technology and System

Beijing, China
jia.tong@pku.edu.cn

Ying Li∗
Peking University
Beijing, China

li.ying@pku.edu.cn

Abstract
Accurate job runtime prediction is critical for efficient sched-
uling in high-performance computing (HPC) platforms. For
instance, precise predictions enable techniques such as back-
filling, where small jobs are executed ahead of schedule to
maximize resource utilization and enhance computational
efficiency. However, existing runtime prediction methods pri-
marily rely on job metadata (e.g., submission time, requested
runtime, and requiredmemory) while ignoring the content of
job scripts, which limits their accuracy. To address this issue,
we propose an Online Retrieval-Augmented Language Model
(ORA) for job runtime prediction. ORA encodes both meta-
data and script information from historical jobs into feature
vectors to form a database, enabling similarity-based retrieval
to assist in predicting the runtime of new jobs. To address
distribution shifts, ORA incrementally updates the database
without requiring model retraining. Additionally, person-
alized retrieval mechanisms are employed to mitigate the

∗Co-corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725757

impact of distribution shifts. To reduce interference caused
by repetitive content in retrieved jobs and enhance the learn-
ing of essential differences, we design a diff-based contextual
learning mechanism. This highlights the differences between
the current job and the retrieved jobs, improving the model’s
ability to capture distinctive features. Experimental results
demonstrate that the proposed method outperforms exist-
ing baselines, achieving an average accuracy improvement
of over 40% in real-world scenarios where the training and
testing job times do not overlap, and the metadata does not
include running information such as actual memory usage.
Ablation studies further highlight the contribution of each
component of the proposed method.

CCS Concepts
• Computing methodologies → Temporal reasoning;
Planning with abstraction and generalization.

Keywords
Runtime Prediction, LLMs, Retrieval-Augmented, Online
Learning

ACM Reference Format:
Hongyi Liu, Yinping Ma, Xiaosong Huang, Lingzhe Zhang, Tong
Jia, and Ying Li. 2025. ORA: Job Runtime Prediction for High-
Performance Computing Platforms Using the Online Retrieval-
Augmented Language Model. In 2025 International Conference on
Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City, UT, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3721145.
3725757

https://orcid.org/0000-0001-6404-369X
https://orcid.org/0000-0002-7693-2950
https://orcid.org/0009-0003-3462-5324
https://orcid.org/0009-0005-9500-4489
https://orcid.org/0000-0002-5946-9829
https://orcid.org/0000-0002-6278-2357
https://doi.org/10.1145/3721145.3725757
https://doi.org/10.1145/3721145.3725757
https://doi.org/10.1145/3721145.3725757

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Hongyi Liu, Yinping Ma, Xiaosong Huang, Lingzhe Zhang, Tong Jia, and Ying Li

1 Introduction
With the increasing computational demands of modern sci-
entific computing and engineering applications, numerous
universities [4], institutions [1], and enterprises [2] have
established their own high-performance computing (HPC)
platforms. These platforms integrate underlying computa-
tional resources and provide computing services. Users can
request resources such as memory, processors, and runtime,
and submit computational scripts (e.g., bash scripts) to form
jobs. To efficiently utilize resources and enhance user experi-
ence, HPC platforms commonly adopt a scheduling strategy
combining first-come-first-serve (FCFS) and backfilling [21].
In FCFS, jobs are executed in the order they are submitted.
Backfilling allows certain small jobs to be run out of order
when resources are available, provided that this does not
compromise the fairness of the FCFS policy. A critical as-
pect of backfilling is predicting job runtime since users often
provide inaccurate estimates [11, 13, 20]. Accurate runtime
predictions help ensure that out-of-order execution does not
disrupt the overall fairness of the scheduling process.
Existing approaches to job runtime prediction primarily

rely on job metadata (e.g., submission time, requested run-
time, and memory requirements). These methods leverage
statistical learning [7, 9, 10, 17, 18] or deep learning tech-
niques [6, 8] to analyze historical data. However, they of-
ten neglect the discriminative information contained in job
scripts, which limits prediction accuracy. As illustrated in
Figure 1, we compared the discriminative power of static
features (e.g., those shown in Table 1 excluding unique iden-
tifiers like job_id and submit_time), running features (e.g.,
Table 1 excluding the run_time target), and script features.
The results show that static features provide limited dis-
crimination, with a duplication ratio exceeding 80% across
datasets. Incorporating running features significantly en-
hances job discrimination, especially for the KTH and SDSC
datasets. However, since runtime predictions generally oc-
cur before job execution, running features (e.g., wait time,
memory usage) are often unavailable in real-world scenarios.
Excitingly, script features (available in D1 and D2 datasets)
also significantly improve discrimination and reduce the du-
plication ratio. Since scripts are accessible at submission time,
they should be utilized for runtime prediction. Yet, research
exploring this direction remains limited.
To harness the rich discriminative information in job

scripts, we propose leveraging large language models (LLMs)
for processing script textual data. Research in natural lan-
guage [16] and code processing [26] has demonstrated that
larger model sizes often yield better performance. Consider-
ing that runtime predictions occur during the job queuing
phase, the computational overhead of LLMs is acceptable.
To address challenges like limited fine-tuning datasets, high

(a)

(b)

Figure 1: Motivational example. (a) Visualizes the dis-
criminative power of static features, running features,
and script features (as defined in Table 1) for job iden-
tification. The static features, static + running fea-
tures, and static + script features are concatenated into
strings, which are used as dictionary keys, with the
job’s run_time as the value. The duplication ratio is
calculated as 1−(𝑘𝑒𝑦#/ 𝑗𝑜𝑏#). (b) Visualizes the impact of
static features, running features, and script features on
the estimation accuracy (EA) of the proposed method
(ORA) and baseline methods (LightGBM, ClusterSVM,
RandomForest) in the D1 dataset (as described in sec-
tion 4.1.1). The results indicate that script features pro-
vide significant discriminative power for jobs, and in-
corporating this information notably improves the es-
timation accuracy of the proposed method.

computational costs, and scalability issues, we propose using
retrieval-augmented generation (RAG) to enhance runtime

ORA: Job Runtime Prediction for High-Performance Computing Platforms ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

prediction accuracy. Prior studies [5] have shown that well-
designed RAG strategies can achieve performance compara-
ble to fine-tuning.

However, utilizing retrieval-augmented LLMs (RALMs) for
job runtime prediction presents two challenges: (1)Distribu-
tion Shifts: A static vector database struggles to maintain
relevance as job distributions change over time, limiting
prediction accuracy. As shown in Figure 2, the correlation
between jobs diminishes as submission intervals (in terms of
time or ID) increase. (2)Redundancy in retrieved samples:
High redundancy in historical samples restricts LLMs from
learning essential information, further constraining predic-
tion accuracy. Figure 3 highlights how users may submit
numerous similar jobs (e.g., due to debugging or parame-
ter tuning), where meaningful distinctions are lost amidst
repetitive contextual information.
To address these challenges, we propose an Online Re-

trieval Augmented (ORA) language model for job runtime
prediction, as illustrated in Figure 4. ORA encodes historical
job metadata and script information into feature vectors to
construct a database, enabling similarity-based retrieval for
runtime prediction. To tackle distribution shifts, the database
is continuously updated without retraining the model, and
personalized retrieval strategies are employed. To mitigate
the impact of redundant information from historical sam-
ples, we design a diff-based context learning approach that
highlights distinctions between the current job and retrieved
samples, enabling LLMs to focus on critical differences. Ex-
perimental results demonstrate that ORA surpasses existing
baselines, improving prediction accuracy by over 40% on
average in real-world scenarios where training and testing
jobs are temporally disjoint, and runtime metadata excludes
running features like memory usage. Ablation studies fur-
ther validate the contributions of individual components in
the proposed approach.

In summary, this paper makes the following contributions:

• Introduces script content into runtime prediction and,
for the first time, applies LLMs to this task, proposing
an Online Retrieval-Augmented Language Model.

• Designs practical techniques to address challenges in
applying RALM to runtime prediction, including con-
tinuous database updates, personalized retrieval strate-
gies to mitigate distribution shifts, and a diff-based
approach to mitigate redundancy in retrieved samples.

• Demonstrates significant performance gains through
extensive experiments and validates the contributions
of individual components via ablation studies. To facil-
itate reproducibility, we have made our code publicly
available [3].

(a)

(b)

Interval =70

Interval =100 h

Figure 2: Impact of the interval (time or ID) between
submitted jobs on the correlation between jobs. (a) Vi-
sualizes the change in the Pearson correlation coeffi-
cient of job runtime as the interval between job IDs
increases. (b) Visualizes the change in the Pearson cor-
relation coefficient of job runtime as the time interval
between job submissions increases. The results show
that as the interval between jobs increases, the corre-
lation in runtime significantly decreases, indicating
that the distribution of jobs is undergoing continuous
evolution.

2 Related Work
2.1 Runtime Prediction
Existing methods for job runtime prediction can be cate-
gorized into two primary approaches based on the mod-
els employed: statistical learning-based methods and deep
learning-based methods. Statistical Learning-Based Methods.
Rauschmayer [18] utilized linear regression and maximum
likelihood estimation to predict job runtime. Renato et al. [9]

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Hongyi Liu, Yinping Ma, Xiaosong Huang, Lingzhe Zhang, Tong Jia, and Ying Li

metadata:
user_id:0
time_req:432000
mem_req:9223372036854784948
proc_req:28
nodes_ req:1

+ submit_time:1687820868

script:
~/software/siesta-

master/siesta/_build/Util/COOP/fat -b 1 -
B 100 bl_2.38 > log
+ prediction:15

Retrieved Job Top1

metadata:
user_id:0
time_req:432000
mem_req:9223372036854784948
proc_req:28
nodes_ req:1

+ submit_time:1691615314

script:
+ n=28
+ /gpfs/share/home/****/software/siesta-
master/siesta/_build/Util/COOP/fat -b 1 -
B 101 wse2 > log
+ prediction:8

Retrieved Job Topk

metadata:
user_id:0
time_req:432000
mem_req:9223372036854784948
proc_req:28
nodes_req:1
submit_time:1687820536

script:
~/software/siesta-
master/siesta/_build/Util/COOP/fat -b 1 -
B 100 bl_2.38 > log

Query Job

19

Groundtruth

…

Figure 3: The examples of query jobs and retrieved
jobs.

adopted the k-nearest neighbor (KNN) algorithm to model
historical data and predict job runtime. Due to the hetero-
geneous characteristics of HPC systems, a single machine
learningmodel often fails to perform consistently, prompting
the widespread adoption of ensemble learning techniques
for runtime prediction. For instance, Park et al. [17] iden-
tified runtime-relevant features, partitioned historical data
into clusters, and constructed support vector machine (SVM)
models for each cluster. Similarly, Dai et al. [10] clustered his-
torical data and built SVMmodels for each cluster while intro-
ducing a mechanism for continuously updating the models
to enhance adaptability to new data. Chen et al. [7] compared
various models, including both single and ensemble models,
for runtime prediction tasks on HPC systems. They recom-
mended LightGBM as a computationally efficient model with
high accuracy, comparable to RandomForest in terms of per-
formance. Deep Learning-Based Methods. Cheon et al. [8] uti-
lized deep neural networks (DNNs) to automatically extract
features and predict job runtimes. Chen et al. [6] introduced
temporal dependencies between jobs, formulating runtime
prediction as a time-series forecasting task. They employed
Transformer models to capture inter-job temporal relation-
ships, improving the accuracy of runtime predictions. While
the aforementioned methods have achieved notable results,
many rely on running features that are unavailable at the
time of prediction, limiting their applicability in real-world
HPC scenarios. Furthermore, these approaches overlook the
rich, discriminative textual features embedded in job scripts,

which constrains their performance in realistic job runtime
prediction tasks.

2.2 Retrieval-augmented generation
Retrieval-augmented generation (RAG) is a technique that
enhances a model’s generation capabilities by incorporat-
ing additional knowledge retrieved from external sources.
Due to its interpretability, scalability, and adaptability, this
paradigm has been widely applied in knowledge-intensive
generation tasks, including code generation [26], dialogue
generation [16], and machine translation [22]. In the RAG
workflow, a retriever fetches supplementary knowledge from
an external knowledge base, which is then combined with
the parametric knowledge learned during pretraining by
the generator to solve the given task. Retrievers typically
use either sparse or dense similarity measures to filter rel-
evant information. Sparse vector retrieval methods, such
as TF-IDF and BM25 [19], compute similarity by matching
keywords in a sparse bag-of-words representation space. In
contrast, dense vector retrieval relies on the inner product
of low-dimensional dense vectors obtained from neural net-
works [15]. Sparse retrieval excels at identifying exact term
overlaps, while dense retrieval captures semantically related
but lexically divergent information. Both approaches funda-
mentally rely on similarity-based retrieval mechanisms. In
the NLP domain, a few studies [23–25] have explored scenar-
ios where retrieved content contains noise. However, these
studies primarily focus on irrelevant knowledge retrieved
due to imperfections in retrieval algorithms. In contrast, the
challenge discussed in this work addresses the issue of ex-
cessive redundant and repetitive information within the re-
trieved content. It is rarely explored. Such redundancy limits
the contextual learning capabilities of large language models
(LLMs), thereby constraining their performance in tasks like
job runtime prediction.

3 Method
In this section, we first present the formal definition of the
job runtime prediction problem. Then, we detail the imple-
mentation of each module of the proposed method, including
the offline database construction module and the online pre-
diction module. Furthermore, within the online prediction
module, we elaborate on two key components: retrieval-
augmented prediction and online database updating.

3.1 Problem Statement
The objective of job runtime prediction is to estimate the
runtime of a given job 𝑥𝑖 at the time of its submission. Each
job 𝑥𝑖 is characterized by numerical metadata 𝑥𝑚𝑖 and textual
script information 𝑥𝑠𝑖 . The goal is to predict the runtime 𝑦𝑖 =

ORA: Job Runtime Prediction for High-Performance Computing Platforms ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

LLM

Vector
Database

HPC
System

Script Features

Static Features

Embedding
Model

History
Jobs

Query
Job

Vector
Database

Query

Similar
Jobs

User-based
Retrieve

Save

Prompt
Template

Diff &
Fill

Question

Runtime
Prediction

Predict

Memory
Jobs

Diff & Fill

Overlap with
Query Job?

Append The Oldest Job

No
Pop & Append

Yes

Online Database Updating Online Prediction

Offline Database Construction

Figure 4: The overview of the proposed method.

𝑓 (𝑥𝑖) such that the predicted runtime𝑦𝑖 closely approximates
the actual runtime 𝑦𝑖 .

3.2 Offline Database Construction
To build a vector database from historical jobs in an HPC
system, job information is first converted into textual repre-
sentations. These representations are then processed using
a text embedder to generate job vectors, which are stored in
the database. For the 𝑗-th metadata field 𝑥 𝑗

𝑖
of the 𝑖-th job, the

value is converted into a string of the format "𝑛𝑎𝑚𝑒 𝑗 : 𝑥 𝑗

𝑖
",

where the 𝑛𝑎𝑚𝑒 𝑗 is the field name of the 𝑗-th metadata field.
Similarly, the script information 𝑥𝑠𝑖 is converted into the for-
mat "𝑠𝑐𝑟𝑖𝑝𝑡 : 𝑥𝑠𝑖 ", where the 𝑠𝑐𝑟𝑖𝑝𝑡

𝑗 is the plain text, with all
textual contents concatenated to form the complete textual
representation of the job, as shown in the Query Job example
in Figure 3. The resulting job vectors are stored in the vector
database.

Each stored sample is configuredwith additional attributes,
including:

• user_id: Used for personalized retrieval.
• submit_time and end_time: Used for online database
updates.

• run_time: Used as the label for historical jobs.

Notably, the textual representation stored in the vector
database excludes the run_time attribute. This omission en-
sures consistency between the representation of new Query
Jobs and the storedHistory Jobs, as the runtime is unavailable
for Query Jobs during prediction. Maintaining identical con-
struction methods for Query Jobs and History Jobs prevents
structural bias in the representations.

3.3 Online Prediction
When a new job arrives in the HPC system, it is first con-
verted into a textual representation (Query Job) following
the method described in the previous section. This represen-
tation is then processed through two main stages: retrieval-
augmented prediction and online database updating.
User-based Retrieve. To minimize the distribution gap

between historical and future jobs, we leverage the user_id
attribute to filter the jobs in the database. Only jobs submitted
by the same user as the Query Job are retained for retrieval,
ensuring the retrieved jobs are more relevant to the Query
Job.
Diff-based In-context Learning. To address the issue

of high redundancy in retrieved historical samples that can
hinder the large language model’s (LLM) ability to extract
meaningful information, we apply a ‘diff’ operation. This
operation highlights the content added in the retrieved job

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Hongyi Liu, Yinping Ma, Xiaosong Huang, Lingzhe Zhang, Tong Jia, and Ying Li

"""
You are an expert in job runtime duration prediction.
There are some retrieved history jobs that similar to the job
waitting to predict.
They are displaied through a diff format.
{context}

Please predict the job runtime duration based on its
matedata, script, and retrieved jobs.
The matedata and script of the job waitting to predict is:
{question}

Your output should only include the runtime, e.g. 10 s.
It means that the script is likely to run for 10 seconds.
Note: DO NOT OUTPUT ANYTHING OTHER THAN
THE RUNTIME.
"""

Figure 5: Prompt template.

compared to the Query Job by marking it with a "+" sym-
bol. Notably, content reductions in the retrieved job are not
marked to minimize the number of tokens fed into the LLM.
Additionally, unaltered content is retained, as it contributes
to the LLM’s understanding of the mapping between simi-
lar job types and their runtimes. Removing such invariant
content would negatively impact prediction accuracy.
Prompt Construction. The processed content from the

diff operation, along with the corresponding runtime predic-
tion, is structured as shown in Figure 3 (e.g., Retrieved Job
Top1). The contents of the top 𝑛𝑘 retrieved jobs are concate-
nated to form the context, while the textual content of the
Query Job is used as the question. These components are then
organized into the template illustrated in Figure 5, forming
the input to the LLM. The LLM outputs the predicted runtime
for the Query Job.

3.3.1 Online Database Updating. To continually reduce the
distribution gap between historical and future jobs, the vector
database is updated dynamically. In real-world scenarios,
only completed jobs can be added to the vector database.
To facilitate this, a memory queue is maintained to store
newly submitted jobs. Once the job at the head of the queue
is completed (i.e., its end_time is less than the submit_time
of the Query Job), it is removed from the queue and added
to the vector database. This ensures that the jobs in the
vector database do not overlap in time with the submission of
the Query Job, maintaining consistency with the real-world
scenarios.

4 Experiment
In this section, we first describe the experimental setup, in-
cluding datasets, baseline methods, evaluation metrics, and

implementation details. Subsequently, we address the follow-
ing research questions (RQs):

• RQ1: How effective is the proposed method overall?
• RQ2: Are the individual components of the proposed
method effective?

• RQ3: Is the proposed method sensitive to parameter
variations?

4.1 Experiment Setup
4.1.1 Datasets. To validate the effectiveness of the proposed
method, we conducted experiments on four datasets, as sum-
marized in Table 1. These include two open-source datasets
(KTH, SDSC) and two proprietary industrial datasets (D1,
D2).

• KTHDataset: The KTHdataset [12] contains 11months
of workload data collected from the 100-node IBM SP2
system at the Swedish Royal Institute of Technology
(KTH) in Stockholm.

• SDSC Dataset: The SDSC dataset [12] comprises 2
years of workload data from the San Diego Supercom-
puter Center. It includes information on the user, ac-
count, and application, as well as requested and used
nodes and time, CPU time, and submit, wait, and run
times.

• D1 Dataset: The D1 dataset contains 1 year (January
2023 to January 2024) of workload data collected from a
university’s high-performance computing (HPC) plat-
form. This dataset is designed for general-purpose com-
puting tasks across the university and includes both
job metadata and script information.

• D2 Dataset: Similar to the D1 dataset, the D2 dataset
focuses primarily on life sciences research computing
tasks.

4.1.2 Baselines. We compared the proposed method with
several baseline approaches, spanning statistical learning-
based methods (LightGBM, ClusterSVM, RandomForest) and
deep learning-based methods (DNN, Transformer).

• LightGBM [14]: An advanced decision-tree-based en-
semble regression method that offers higher compu-
tational efficiency compared to RandomForest. Light-
GBM is also the runtime prediction algorithm currently
deployed in the production environment of the univer-
sity’s high-performance computing platform where
the D1 and D2 datasets originate.

• RandomForest [7]: A standard decision-tree-based en-
semble method, implemented using the sklearn library.

• ClusterSVM [10]: This method employs clustering to
partition jobs into groups. An individual SVM model
is trained for each cluster to predict job runtimes. To

ORA: Job Runtime Prediction for High-Performance Computing Platforms ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 1: Dataset Overview

Dataset KTH SDSC D1 D2

Job # 28,476 58,715 19,564 187,231
Feature # 18 18 11 11

Static
Feature

job_id,
submit_time,

user_id,
group_id,
time_req,
mem_req,
proc_req,
exe_num,
q_num,

partition_num,
prev_job,
think_time

Same
as KTH

job_id,
submit_time,

user_id,
group_id,
time_req,
mem_req,
proc_req,
nodes_req

Same
as D1

Running
Feature

wait_time,
proc_used,

cputime_used,
mem_used,
status,

run_time

Same
as KTH

start_time,
run_time

Same
as D1

Script
Feature - - bash_script Same

as D1

address distribution shifts, the models are updated
every 700 jobs.

• DNN [8]: A runtime prediction approach leveraging
deep neural networks (DNN).

• Transformer [6]: This method clusters user IDs to map
them to user categories, improving prediction accu-
racy across different user groups. It reformulates the
job runtime prediction task as a time-series forecasting
problem, leveraging Transformers to capture sequen-
tial dependencies between jobs and enhance runtime
prediction.

4.1.3 Evaluation Metrics. To evaluate the accuracy of job
runtime prediction, we utilized standard metrics, including
Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Estimation Accuracy (EA). The Estimation Accuracy (EA)
metric is widely adopted for assessing the precision of job
runtime predictions, as referenced in [6, 10]. The following
formulas define the estimation accuracy for an individual
job (𝑒𝑎𝑖) and the average estimation accuracy across all jobs
(𝐸𝐴):

𝑒𝑎𝑖 =

𝑓 (𝑥𝑖)
𝑦𝑖

, 𝑓 (𝑥𝑖) ≤ 𝑦𝑖

𝑦𝑖

𝑓 (𝑥𝑖)
, 𝑓 (𝑥𝑖) > 𝑦𝑖

(1)

𝐸𝐴 = 1/𝑛 ∗
𝑛∑︁
𝑖=1

𝑒𝑎𝑖 . (2)

Here, 𝑛 represents the total number of jobs, 𝑓 (𝑥𝑖) denotes
the predicted runtime of the 𝑖-th job, and 𝑦𝑖 indicates its
actual runtime.

4.1.4 Implementation Details. For all datasets, we used the
following consistent hyperparameters: the number of re-
trieved historical samples 𝑛ℎ = 7, and the training-to-testing
split ratio of 9:1, where training data is used to construct the
vector database or model. The LLM used was Qwen2.5:14b.
To better reflect real-world scenarios, only static features and
script features from each dataset were utilized for job time
prediction. Ollama was used to build local LLMs, Chroma
was used to construct the vector database, and LangChain
was employed to build the pipeline.

4.2 RQ1: Performance Study
To evaluate the effectiveness of the proposed method, we
compared it against multiple baseline approaches, as shown
in Table 2. The results demonstrate that the proposed method
consistently outperforms the baselines across four datasets,
achieving significantly lower MAE and MSE and substan-
tially higher EA. On average, the proposed method improves
EA by 43% across the four datasets, validating its effective-
ness. One primary reason for the poorer performance of
baseline methods is their reliance solely on static features,
without incorporating running features. As illustrated in
Figure 1(b), when running features are added to the Random-
Forest method, its EA improves significantly. However, it still
falls short of the proposed method, further corroborating the
efficacy of the proposed approach.

When comparing the proposed method with existing job
runtime prediction techniques, it exhibits distinct advan-
tages over statistical learning-based approaches (e.g., Light-
GBM, ClusterSVM, RandomForest). These improvements
stem from incorporating more discriminative script infor-
mation and leveraging deep learning for automatic feature
extraction. Compared to deep learning-based methods (e.g.,
DNN, Transformer), the proposed method integrates script
information and uses language models to capture script se-
mantics. Additionally, employing a retrieval-augmented gen-
eration (RAG) approach enhances runtime prediction accu-
racy.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Hongyi Liu, Yinping Ma, Xiaosong Huang, Lingzhe Zhang, Tong Jia, and Ying Li

Table 2: Main Result. MAE and MSE should be minimized, while EA should be maximized. The best values are
highlighted for easy reference.

KTH SDSC D1 D2 Average

MAE MSE EA MAE MSE EA MAE MSE EA MAE MSE EA EA

LightGBM (NeurIPS 17) 0.0367 0.0057 0.4235 0.0134 0.0006 0.3547 0.1044 0.0284 0.2691 0.061 0.0123 0.3701 0.3543
ClusterSVM (SC 22) 0.0379 0.0052 0.4166 0.0151 0.0006 0.2961 0.1056 0.0268 0.3331 0.0659 0.0115 0.2849 0.3326
RandomForest (HP3C 20) 0.0367 0.0054 0.4584 0.0139 0.0006 0.3577 0.1116 0.0288 0.3309 0.1459 0.0428 0.303 0.3625
DNN (Clust Comput 21) 0.0338 0.0056 0.5164 0.0145 0.0008 0.3125 0.1064 0.0354 0.2156 0.0523 0.0141 0.3249 0.3423
Transformer (J Supercomput 23) 0.0342 0.0053 0.5069 0.0145 0.0007 0.3108 0.1082 0.0363 0.1998 0.0519 0.0139 0.3139 0.3328
ORA (𝑂𝑢𝑟) 0.0198 0.0039 0.8164 0.0052 0.0003 0.7825 0.0624 0.0239 0.7402 0.0301 0.0102 0.7189 0.7645

(a) (b) (c)

Figure 6: Parameter sensitive.

Table 3: Ablation Study on Modules.

EA KTH SDSC D1 D2 Average
ORA (𝑂𝑢𝑟) 0.8164 0.7825 0.7402 0.7189 0.7645
wo Update 0.7938 0.7688 0.7156 0.6909 0.7422
wo User 0.7737 0.7401 0.6845 0.7041 0.7256
wo Diff 0.8012 0.7826 0.7036 0.7139 0.7503
wo RAG 0.3255 0.2636 0.1525 0.2686 0.2525
wo LLM 0.5244 0.5298 0.5201 0.6326 0.5517
w BERT 0.5164 0.3125 0.2854 0.3549 0.3673

4.3 RQ2: Ablation Study
To validate the effectiveness of each component of the pro-
posedmethod, we conducted a comprehensive ablation study,
as shown in Table 3.
Effectiveness of RAG: In Table 3, wo RAG represents

a variant of the proposed method, where the LLM input
includes only the information of the Query Job, without
incorporating similar historical jobs. This represents a zero-
shot scenario for job runtime prediction. The results show
that compared to wo RAG, the proposed method ORA sig-
nificantly improves, validating the effectiveness of RAG and

confirming that historical similar jobs indeed contribute to
better job runtime prediction for the Query Job.

Effectiveness of User Personalization in Retrieval: In
Table 3, wo User represents a variant of the proposed method
where historical jobs are retrieved without considering that
the user of the historical jobs must match the user of the
Query Job. This represents a general RAG approach. The
results indicate that ORA, the proposed method, outperforms
wo User, confirming the effectiveness of user personalization
in retrieval. This shows that historical jobs from the same
user are more relevant and help mitigate data distribution
shifts to some extent.
Effectiveness of Diff-based In-context Learning: In

Table 3, wo Diff represents a variant of the proposed method
where the retrieved historical jobs do not use the Diff oper-
ation to mark differences from the Query Job. The results
demonstrate that ORA outperforms wo Diff, validating the
effectiveness of Diff-based in-context learning. This suggests
that redundant information in the retrieved historical jobs
can hinder LLM’s context learning and affect the accuracy
of job runtime predictions. By highlighting the differences,
LLM can better understand the inherent distinctions between
different samples, leading to improved prediction accuracy.

ORA: Job Runtime Prediction for High-Performance Computing Platforms ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 4: Ablation Study on Base Model.

EA KTH SDSC Average D1 D2 Average
Qwen2.5:14b 0.8164 0.7825 0.7994 0.7402 0.7189 0.7295
Phi3:14b 0.6658 0.5199 0.5928 0.2236 0.6048 0.4142
Llama3.2:3b 0.3321 0.3139 0.3231 0.3639 0.3412 0.3525
GPT-4o 0.8038 0.7807 0.7922 - - -

Table 5: Efficiency Study.

Time (s) KTH SDSC D1 D2 Average
LightGBM 1.27 2.11 1.21 4.71 2.32
ClusterSVM 0.55 0.95 1.41 2.88 1.44
RandomForest 11.07 21.73 5.14 43.49 20.35
DNN 1.41 2.97 0.98 9.32 3.67
Transformer 2.91 5.98 2.01 18.98 7.47
ORA (𝑂𝑢𝑟) 699.92 1865.37 894.38 12173.27 3908.23

Effectiveness of Online Database Update: In Table 3,
wo Update represents a variant of the proposed method
where the vector database is not updated online. The re-
sults show that ORA outperforms wo Update, demonstrating
the effectiveness of online database updates. The reason be-
hind this is that continuously updating the database helps
mitigate data distribution shifts over time.
Effectiveness of LLM: In Table 3, wo LLM represents

a variant of the proposed method where job runtime pre-
dictions are directly based on the average of the retrieved
historical jobs. w BERT represents a variant of the DNN
method [8], which uses BERT to encode job scripts into fea-
ture vectors, along with other job metadata, as inputs to a
DNN model trained on the training set and tested on the test
set. The results show that ORA significantly outperforms wo
LLM, validating the effectiveness of using LLM to analyze
historical jobs. LLM can leverage the historical jobs to predict
the Query Job’s runtime more effectively. The results also
show that while w BERT achieves better prediction perfor-
mance compared to the DNN method in Table 2, due to the
incorporation of job script information, it still lags behind
ORA. This is because a single DNN model is not sufficient to
capture all the relevant features of job runtime, while LLM
has stronger world knowledge and analytical capabilities,
resulting in better prediction accuracy.

4.4 RQ3: Parameter Sensitivity
To evaluate the parameter sensitivity of the proposedmethod,
we examined the impact of several hyperparameters unique
to our method on the EA value under different settings, in-
cluding the number of historical samples retrieved (𝑛ℎ), the
choice of LLM model, and the quantity of parameters in the
LLM.

Number of Retrieved Historical Samples (𝑛ℎ): We sys-
tematically varied 𝑛ℎ ∈ {1, 3, 5, 7, 9} and analyzed its impact
on the EA value, as shown in Figure 6(a). The results indi-
cate that as 𝑛ℎ increases, the EA value initially increases
and then plateaus. This is because, at first, increasing the
number of retrieved samples provides more information for
the LLM, thereby improving the accuracy of job runtime
predictions. However, as the number of samples grows too
large, the amount of useful information starts to diminish,
and irrelevant or low-correlated data may interfere, lead-
ing to a decrease in prediction accuracy. We also visualized
the number of tokens consumed for different values of 𝑛ℎ ,
as shown in Figure 6(b). The results clearly show a linear
increase in token consumption with the growth of 𝑛ℎ . There-
fore, to balance token consumption and prediction accuracy,
we set 𝑛ℎ = 7.

LLM Model Selection: We explored the impact of differ-
ent LLMmodels on the performance of the proposed method,
as shown in Table 4. We tested three open-source models:
Qwen2.5:14b, Phi3:14b, and Llama3.2:3b, along with a closed-
source model, GPT4-o (which was only evaluated on open-
source datasets to avoid privacy issues). The results demon-
strate that the choice of LLM model significantly affects the
performance of the proposed method. Specifically, as the
LLM model’s capability increases, the job runtime predic-
tion accuracy improves. Notably, Qwen2.5:14b performed
even slightly better than GPT4-o, which provides hope for
deploying efficient models with fewer parameters in local
environments.

LLMParameter Size: To further investigate the impact of
LLM parameter size on the proposed method, we conducted
a parameter sensitivity test using models from the Qwen2.5
series, as shown in Figure 6(c). The results show that as the
number of parameters increases, the EA value rises initially
and then decreases. This is because, at first, the increasing
model size enhances the LLM’s understanding ability, thus
improving job runtime prediction accuracy. However, when
the model size becomes too large, the prediction task differs
from a generation task, and excessive model complexity may
limit prediction accuracy. To balance prediction performance
and computational cost, we selected Qwen2.5:14b as the base
LLM for our method.

5 Discussion
5.1 Limitations and Future Work
One limitation of the proposed method is its relatively low
time efficiency. To evaluate the time efficiency, we compared
the total training and testing time of the proposed method
with the baseline methods across all datasets, as shown in
Table 5. The results indicate that the proposed method, ORA,
does indeed suffer from time efficiency drawbacks. However,

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Hongyi Liu, Yinping Ma, Xiaosong Huang, Lingzhe Zhang, Tong Jia, and Ying Li

considering the significant improvement in accuracy and the
fact that each submitted job only needs to be predicted once,
which helps the backfilling algorithm better schedule jobs,
the time overhead is acceptable. In future work, we plan to
design more efficient job runtime prediction methods.

5.2 Threats to Validity
An external validity threat is that only the D1 and D2 datasets
contain job script information, and both datasets come from
the same university’s high-performance computing plat-
form, which could affect the generalizability of the proposed
method. However, D1 and D2 are actually sourced from
two distinct computing clusters, which we believe mitigates
this concern to some extent. Additionally, due to privacy
restrictions, there is currently a lack of open-source datasets
containing job script information. In the future, we plan to
consider removing sensitive information and releasing an
open-source dataset to promote further research in this area.
We also intend to validate the proposed method on more
high-performance computing platforms.

6 Conclusion
Existing job runtime prediction methods primarily rely on
job metadata (such as submission time, required runtime,
and memory size), while overlooking the job script con-
tent, which limits prediction accuracy. To address this is-
sue, we propose an online retrieval-augmented language
model (ORA) for job runtime prediction. The model encodes
both historical job metadata and script information into fea-
ture vectors to form a database, from which similar jobs are
retrieved to aid in predicting the runtime of new jobs. Ad-
ditionally, to mitigate distributional shifts, the database is
continuously updated without the need to retrain the model.
We also incorporate user-personalized retrieval to further
alleviate distributional variations. To address the problem
of redundant content in retrieved jobs interfering with the
LLM’s ability to learn meaningful knowledge, we design a
diff-based contextual learning method to highlight parts of
the job that differ from the current job, thereby enhancing
the LLM’s learning of the varying components. Experiments
demonstrate that the proposed method outperforms existing
baseline methods, achieving an average accuracy improve-
ment of over 40% in real-world scenarios. Ablation studies
confirm the contribution of each component of the proposed
method.

Acknowledgments
This work was supported by Key R&D Project of Guang-
dong Province (No.2020B010164003). This work was also
supported by Special Funds for Construction of Innovative
Provinces in Hunan Province under contract 2023GK1010

and High Performance Computing Platform of Peking Uni-
versity.

References
[1] 2025. National Partnership for Advanced Computational Infrastruc-

ture. https://www.nsf.gov/awardsearch/showAward?AWD_ID=
9619020&HistoricalAwards=false.

[2] 2025. National Partnership for Advanced Computational Infrastructure.
https://aliyun.com.

[3] 2025. ORA. https://github.com/lhysgithub/ORA.
[4] 2025. PDC Center for High Performance Computing. https://www.

pdc.kth.se.
[5] Angels Balaguer, Vinamra Benara, Renato Luiz de Freitas Cunha,

Roberto de M Estevão Filho, Todd Hendry, Daniel Holstein, Jennifer
Marsman, Nick Mecklenburg, Sara Malvar, Leonardo O Nunes, et al.
2024. RAG vs fine-tuning: Pipelines, tradeoffs, and a case study on
agriculture. arXiv e-prints (2024), arXiv–2401.

[6] Fengxian Chen. 2023. Job runtime prediction of HPC cluster based on
PC-Transformer. The Journal of Supercomputing 79, 17 (2023), 20208–
20234.

[7] Xiaomeng Chen, Hui Zhang, Hanli Bai, Chunming Yang, Xujian Zhao,
and Bo Li. 2020. Runtime prediction of high-performance computing
jobs based on ensemble learning. In Proceedings of the 2020 4th Inter-
national Conference on High Performance Compilation, Computing and
Communications. 56–62.

[8] Hyunjoon Cheon, Jinseung Ryu, Jaecheol Ryou, Chan Yeol Park, and
Yo-Sub Han. 2023. ARED: automata-based runtime estimation for
distributed systems using deep learning. Cluster Computing 26, 5
(2023), 2629–2641.

[9] Renato LF Cunha, Eduardo R Rodrigues, Leonardo P Tizzei, and
Marco AS Netto. 2017. Job placement advisor based on turnaround pre-
dictions for HPC hybrid clouds. Future Generation Computer Systems
67 (2017), 35–46.

[10] Yiqin Dai, Yong Dong, Kai Lu, Ruibo Wang, Wei Zhang, Juan Chen,
Mingtian Shao, and Zheng Wang. 2022. Towards scalable resource
management for supercomputers. In SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE,
1–15.

[11] Yuping Fan, Paul Rich,William EAllcock, Michael E Papka, and Zhiling
Lan. 2017. Trade-off between prediction accuracy and underestimation
rate in job runtime estimates. In 2017 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 530–540.

[12] Dror G Feitelson, Dan Tsafrir, and David Krakov. 2014. Experience with
using the parallel workloads archive. J. Parallel and Distrib. Comput.
74, 10 (2014), 2967–2982.

[13] Eric Gaussier, David Glesser, Valentin Reis, and Denis Trystram. 2015.
Improving backfilling by using machine learning to predict running
times. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. 1–10.

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Wei-
dong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient
gradient boosting decision tree. Advances in neural information pro-
cessing systems 30 (2017).

[15] Sheng-Chieh Lin, Minghan Li, and Jimmy Lin. 2023. Aggretriever: A
simple approach to aggregate textual representations for robust dense
passage retrieval. Transactions of the Association for Computational
Linguistics 11 (2023), 436–452.

[16] Chun Liu, Baoqing Wang, and Yuqiang Li. 2023. Dialog generation
model based on variational Bayesian knowledge retrieval method.
Neurocomputing 561 (2023), 126878.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=9619020&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=9619020&HistoricalAwards=false
https://aliyun.com
https://github.com/lhysgithub/ORA
https://www.pdc.kth.se
https://www.pdc.kth.se

ORA: Job Runtime Prediction for High-Performance Computing Platforms ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[17] Ju-Won Park and Eunhye Kim. 2017. Runtime prediction of parallel
applications with workload-aware clustering. The Journal of Super-
computing 73, 11 (2017), 4635–4651.

[18] Nathalie Rauschmayr. 2015. A History-based Estimation for LHCb job
requirements. In Journal of Physics: Conference Series, Vol. 664. IOP
Publishing, 062050.

[19] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic
relevance framework: BM25 and beyond. Foundations and Trends® in
Information Retrieval 3, 4 (2009), 333–389.

[20] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. 2007. Backfilling using
system-generated predictions rather than user runtime estimates. IEEE
Transactions on Parallel and Distributed Systems 18, 6 (2007), 789–803.

[21] Adam KL Wong and Andrzej M Goscinski. 2007. Evaluating the EASY-
backfill job scheduling of static workloads on clusters. In 2007 IEEE
International Conference on Cluster Computing. IEEE, 64–73.

[22] Tong Ye, Lingfei Wu, Tengfei Ma, Xuhong Zhang, Yangkai Du, Peiyu
Liu, Shouling Ji, and Wenhai Wang. 2023. Tram: A Token-level

Retrieval-augmented Mechanism for Source Code Summarization.
arXiv preprint arXiv:2305.11074 (2023).

[23] Xunjian Yin, Baizhou Huang, and XiaojunWan. 2023. ALCUNA: Large
language models meet new knowledge. arXiv preprint arXiv:2310.14820
(2023).

[24] Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. 2023. Mak-
ing retrieval-augmented language models robust to irrelevant context.
arXiv preprint arXiv:2310.01558 (2023).

[25] Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei
Wang, and Dong Yu. 2023. Chain-of-note: Enhancing robustness in
retrieval-augmented language models. arXiv preprint arXiv:2311.09210
(2023).

[26] Shuyan Zhou, Uri Alon, Frank F Xu, ZhiruoWang, Zhengbao Jiang, and
Graham Neubig. 2022. Docprompting: Generating code by retrieving
the docs. arXiv preprint arXiv:2207.05987 (2022).

	Abstract
	1 Introduction
	2 Related Work
	2.1 Runtime Prediction
	2.2 Retrieval-augmented generation

	3 Method
	3.1 Problem Statement
	3.2 Offline Database Construction
	3.3 Online Prediction

	4 Experiment
	4.1 Experiment Setup
	4.2 RQ1: Performance Study
	4.3 RQ2: Ablation Study
	4.4 RQ3: Parameter Sensitivity

	5 Discussion
	5.1 Limitations and Future Work
	5.2 Threats to Validity

	6 Conclusion
	Acknowledgments
	References

