
IA-Chol: Input-Aware Cholesky Decomposition on
CPU and GPU

Jixiao Deng∗
National University of Defense Technology

Laboratory of Digitizing Software for Frontier
Equipment

Changsha, Hunan, China
National University of Defense Technology
National Key Laboratory of Parallel and

Distributed Computing
Changsha, Hunan, China

National University of Defense Technology
College of Computer Science and Technology

Changsha, Hunan, China
1169068630@qq.com

Qinglin Wang∗†
National University of Defense Technology

Laboratory of Digitizing Software for Frontier
Equipment

Changsha, Hunan, China
National University of Defense Technology
National Key Laboratory of Parallel and

Distributed Computing
Changsha, Hunan, China

National University of Defense Technology
College of Computer Science and Technology

Changsha, Hunan, China
wangqinglin@nudt.edu.cn

Lin Chen
National University of Defense Technology

Laboratory of Digitizing Software for Frontier
Equipment

Changsha, Hunan, China
National University of Defense Technology
National Key Laboratory of Parallel and

Distributed Computing
Changsha, Hunan, China

National University of Defense Technology
College of Computer Science and Technology

Changsha, Hunan, China
chenlin1080@outlook.com

Tun Li
National University of Defense Technology
College of Computer Science and Technology

Changsha, Hunan, China
tunli@nudt.edu.cn

Bo Yang
National University of Defense Technology

Laboratory of Digitizing Software for Frontier
Equipment

Changsha, Hunan, China
National University of Defense Technology
National Key Laboratory of Parallel and

Distributed Computing
Changsha, Hunan, China

National University of Defense Technology
College of Computer Science and Technology

Changsha, Hunan, China
yb@nudt.edu.cn

Xinhai Chen
National University of Defense Technology

Laboratory of Digitizing Software for Frontier
Equipment

Changsha, Hunan, China
National University of Defense Technology
National Key Laboratory of Parallel and

Distributed Computing
Changsha, Hunan, China

National University of Defense Technology
College of Computer Science and Technology

Changsha, Hunan, China
chenxinhai16@nudt.edu.cn

Jie Liu
National University Of Defense Technology
Laboratory of Digitizing Software for Frontier

Equipment
Changsha, Hunan, China

National University Of Defense Technology
National Key Laboratory of Parallel and

Distributed Computing
Changsha, Hunan, China

National University Of Defense Technology
College of Computer Science and Technology

Changsha, Hunan, China
liujie@nudt.edu.cn

∗Both authors contributed equally to this research.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

Abstract
Cholesky decomposition plays a pivotal role in numerical lin-
ear algebra, providing an efficient approach for solving linear
systems and computing the determinant of positive definite
matrices. However, despite advancements in computational
power and cache capacity, optimizing performance for small
andmedium-sizedmatrices remains challenging, with the po-
tential of modern computing resources underutilized. To ad-
dress this, we propose, for the first time, an innovative oper-
ator fusion scheme to optimize the Cholesky decomposition

ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725756

https://orcid.org/0009-0006-8080-0893
https://orcid.org/0000-0002-8286-6566
https://orcid.org/0000-0002-6908-8472
https://orcid.org/0000-0001-7498-3909
https://orcid.org/0009-0008-0058-2350
https://orcid.org/0000-0002-2931-4893
https://orcid.org/0000-0003-3745-7541
https://doi.org/10.1145/3721145.3725756

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jixiao Deng, Qinglin Wang, Lin Chen, Bo Yang, Xinhai Chen, Tun Li, and Jie Liu

algorithm, achieving remarkable results. Nevertheless, this
has led to a new problem: the optimal tile size has undergone
significant changes, which has resulted in poor performance
of traditional tile size predictionmethods. To tackle this issue,
we developed a novel tile size prediction method tailored for
the fused-operator Cholesky algorithm. This method auto-
matically determines the optimal tile size based on the input
matrix size and is applicable to both CPU and GPU. We name
this method IA-Chol. Experimental results demonstrate that
IA-Chol delivers outstanding performance on both CPU and
GPU platforms, effectively mitigating sensitivity issues while
significantly outperforming many state-of-the-art libraries.
For instance, on the NVIDIA A100 GPU, IA-Chol achieves
an efficiency of 85.1%, substantially surpassing cuSOLVER’s
75.8%. Moreover, IA-Chol not only exhibits significant per-
formance improvements for medium-sized matrices but also
maintains exceptional performance for matrices larger than
20,000 on GPUs. Additionally, IA-Chol outperforms other tile
size prediction methods, supported by in-depth theoretical
analysis and architectural insights explaining the root causes
of these performance gains.

CCS Concepts
• Computing methodologies → Shared memory algo-
rithms; • Mathematics of computing→ Solvers.

Keywords
Cholesky decomposition, Input-aware adaptive-size tile, Op-
erator fusion, GPU, CPU

ACM Reference Format:
Jixiao Deng, QinglinWang, Lin Chen, Tun Li, Bo Yang, Xinhai Chen,
and Jie Liu. 2025. IA-Chol: Input-Aware Cholesky Decomposition on
CPU and GPU. In 2025 International Conference on Supercomputing
(ICS ’25), June 08–11, 2025, Salt Lake City, UT, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3721145.3725756

1 Introduction
Cholesky factorization is a well-known method for solv-
ing linear systems involving symmetric positive-definite
matrices[10]. It is widely used in fields such as numeri-
cal linear algebra, scientific computing[12, 24], machine
learning[17, 22], engineering and physical simulations[31],
computational finance[27], image processing, computer
vision[15], signal processing[23], and weather forecasting[4].
These applications often require performing Cholesky fac-
torization on matrices ranging from hundreds to thousands,
or even larger in size. As such, accelerating the Cholesky
factorization is of significant practical importance.

Challenge.With the rapid advancement of multi-core sys-
tems and the significant increase in the number of cores and
cache capacity, the aforementioned issue has hindered the

full utilization of computational performance for medium-
sizedmatrices (ranging from hundreds to thousands or more).
As shown in Figure 1, even for medium-sized matrices with
dimensions in the thousands, many state-of-the-art operator
libraries still exhibit a considerable gap between the per-
formance of their Cholesky decomposition and the actual
peak performance of Cholesky, failing to fully leverage the
computational power of the hardware.
Solution. To address this issue, we propose an operator

fusion scheme tailored for Cholesky decomposition. This
scheme theoretically reduces 1

12𝑁
3 + 3

2𝑁
2 cache accesses,

with detailed explanations provided in Chapter 3. As illus-
trated in Figure 1, our approach(IA-Chol) significantly en-
hances the performance of medium-sized Cholesky decom-
position, enabling it to better exploit the computational ca-
pabilities of the hardware.

1000 2000 3000 4000 5000 6000 7000 8000
Matrix Size (n)

0

100

200

300

400
Pe

rfo
rm

an
ce

 (G
FL

OP
S)

Actual Peak Performance = 440GFLOPS

Gap between Each Library and Actual Peak Performance

IA-Chol(this work)
SLATE
PLASMA
OpenBLAS
libFLAME

Figure 1: This figure demonstrates the gap between
the Cholesky decomposition of our work and other ad-
vanced libraries on medium-sized matrices, compared
to the actual peak performance. This is an example us-
ing performance on the Intel(R) Xeon(R) Silver 4210R.
The tile size for SLATE is set to 256, for PLASMA to
192, and for libflame to 128, as these values achieve the
best average performance within the range of 1000 to
10000.

New Challenge. Although significant performance im-
provements have been achieved, a new challenge has
emerged: the optimal tile size for Cholesky decomposition
after operator fusion is smaller than before. This indicates
that smaller tile sizes can deliver better performance, and the
parallelism of the algorithm has been enhanced. However,
this also means that the selection of tile size has become
more critical, and the previous approach is no longer effec-
tive in identifying the optimal tile size for peak performance.
Figure 2 shows this change.
New Solution. To address the aforementioned problem,

we propose a method for predicting tile sizes specifically

https://doi.org/10.1145/3721145.3725756

IA-Chol: Input-Aware Cholesky Decomposition on CPU and GPU ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

100 200 300 400 500
tile size

0

50

100

150

200

250

300

350

400

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

The relationship between performance and tile size.

IA-Chol(this work)
PLASMA
new best tile(The size is 96)
old best tile(The size is 144)

Figure 2: This figure shows the relationship between
performance and tile size on the Intel(R) Xeon(R) Silver
4210R for n=5000. It can be observed that the optimal
tile size has shifted noticeably, with the optimal tile
size becoming significantly smaller. This trend is also
observed on othermachines. The reason for comparing
with PLASMA is that the code of IA-Chol on CPU is
modified based on PLASMA (this will be discussed in
detail in Section 1 of Chapter 3 in the Overview).

for the fused Cholesky decomposition. Compared to several
state-of-the-art operator libraries, our method offers two key
advantages: first, it predicts the optimal tile size based on
both the input matrix size and the performance parameters
of the computing platform, whereas existing methods pri-
marily rely on performance parameters alone; second, our
method is applicable to both CPU and GPU platforms. We
collectively refer to the operator fusion scheme and the tile
size prediction method as IA-Chol.

Evaluation. We implemented IA-Chol on both CPU and
GPU and conducted experiments on various devices, com-
paring its performance with several state-of-the-art libraries.
Surprisingly, not only was the issue of insufficient perfor-
mance for medium-sized matrices effectively addressed, but
significant performance improvements were also achieved
for large matrices (dimensions exceeding 20,000) on GPUs.
For instance, on the A100 GPU, IA-Chol achieved an effi-
ciency of 85.1% for Cholesky decomposition, compared to
only 75.8% achieved by cuSOLVER. Our work will be open-
sourced on GitHub.

In summary, we offer the following contributions:
– IA-Chol proposes an operator fusion scheme for
Cholesky decomposition, which theoretically reduces
memory access overhead by 1

12𝑁
3 + 3

2𝑁
2.

– To address the issue of optimal tile size offset after
operator fusion, IA-Chol introduces an automatic tile
size adjustment method based on matrix size and com-
puting platform parameters. This method is applicable

to both CPU and GPU platforms, and outperforms
other tile size prediction approaches in terms of per-
formance.

– IA-Chol not only significantly enhances the perfor-
mance of medium-sized Cholesky decomposition but
also improves the performance of large matrices on
GPUs. The performance of IA-Chol surpasses that of
many current state-of-the-art operator libraries.

2 Background
Cholesky decomposition is a numerical method used for
factorizing a symmetric positive definite matrix 𝐴 into the
product of a lower triangular matrix 𝐿 and its transpose,
such that 𝐴 = 𝐿𝐿𝑇 . As the size of the matrix increases, the
computational cost and memory requirements also rise sig-
nificantly, which can lead to performance bottlenecks on
modern architectures.Algorithm 1 presents the pseudocode
for the Cholesky decomposition, detailing its execution pro-
cess. Figure 3 shows the Cholesky decomposition process of
a 5 × 5 matrix.

C0 C1 C2 C3 C4

R0

R1

R2

R3

R4

POTRF

TRSM SYRK

TRSM GEMM SYRK

TRSM GEMM GEMM SYRK

TRSM GEMM GEMM GEMM SYRK

Cholesky Decomposition

Figure 3: This figure shows the process of Cholesky
decomposition of a 5 × 5 positive definite matrix, with
arrows indicating the direction of data flow.

The Cholesky decomposition can be summarized as the
following steps:
• POTRF: The Cholesky factorization of the diagonal
tile.
• TRSM: Solving triangular systems to update the sub-
diagonal elements of the tiles.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jixiao Deng, Qinglin Wang, Lin Chen, Bo Yang, Xinhai Chen, Tun Li, and Jie Liu

• SYRK: Updating the diagonal tiles to ensure symmetry
and maintain positive definiteness.
• GEMM: Performing general matrix-matrix multiplica-
tions to compute the updates of the remaining tiles.

Algorithm 1 Cholesky Decomposition
1: Input: Positive definite matrix 𝐴 of size 𝑁 × 𝑁 , tile size
𝑛𝑏 × 𝑛𝑏

2: SplitTile(𝐴, 𝑛𝑏)
3: 𝑛 ← ⌈𝑁 /𝑛𝑏⌉
4: for 𝑘 = 0 to 𝑛 − 1 in parallel do
5: 𝐴[𝑘, 𝑘] ← POTRF(𝐴[𝑘, 𝑘])
6: for 𝑖 = 𝑘 + 1 to 𝑛 − 1 in parallel do
7: 𝐴[𝑖, 𝑘] ← TRSM(𝐴[𝑘, 𝑘], 𝐴[𝑖, 𝑘])
8: end for
9: for 𝑗 = 𝑘 + 1 to 𝑛 − 1 in parallel do
10: 𝐴[𝑗, 𝑗] ← SYRK(𝐴[𝑗, 𝑘], 𝐴[𝑗, 𝑗])
11: for 𝑖 = 𝑗 + 1 to 𝑛 − 1 in parallel do
12: 𝐴[𝑖, 𝑗] ← GEMM(𝐴[𝑖, 𝑘], 𝐴[𝑗, 𝑘])
13: end for
14: end for
15: end for
16: Return 𝐴

3 Method
3.1 Overview
Our implementation is based on adaptations of PLASMA and
SLATE’s Cholesky decomposition. Specifically, PLASMA’s
code is used for CPUs, while SLATE’s code is employed for
GPUs. Why not use a unified codebase? The reason lies in
their respective strengths: on CPUs, PLASMA demonstrates
better performance, features mature task scheduling, and has
a simpler codebase that is easier to modify. However, its ma-
jor limitation is the lack of GPU support. For GPUs, SLATE
was chosen because Cholesky decomposition on GPUs typi-
cally involves large matrices, and SLATE is specifically de-
signed for such cases. Although SLATE can also run on CPUs,
its task scheduling overhead is relatively high when dealing
with small- to medium-sized matrices, leaving little room
for performance improvement. Since PLASMA and SLATE
have similar implementations of Cholesky decomposition,
our IA-Chol can be seamlessly ported to both.
Algorithm 2 represents the pseudocode for IA-Chol and

consists of three main parts.
The first step is adaptive sizing, which determines the

optimal tile size based on the input matrix size and the ma-
chine’s performance parameters (corresponding to Line 2 of
Algorithm 2, with details elaborated in Section 3.3).

The second step involves partitioning the inputmatrix into
multiple tiles, a process automatically handled by PLASMA
or SLATE (corresponding to Line 3 of Algorithm 2).
The third step introduces our operator fusion scheme,

specifically designed for Cholesky decomposition (corre-
sponding to Lines 5 to 26 of Algorithm 2).

Algorithm 2 IA-Chol
1: Input: Positive definite matrix 𝐴 of size 𝑁 × 𝑁
2: 𝑛𝑏 ← Input-AwareAdaptiveSize(𝑁,CacheSize,CoreNum, Peak)
3: SplitTile(𝐴, 𝑛𝑏)
4: 𝑛 ← ⌈𝑁 /𝑛𝑏⌉
5: for 𝑘 = 0 to 𝑛 − 1 step 2 in parallel do
6: 𝐴[𝑘, 𝑘] ← POTRF(𝐴[𝑘, 𝑘])
7: 𝐴[𝑘 + 1, 𝑘] ← TRSM(𝐴[𝑘, 𝑘], 𝐴[𝑘 + 1, 𝑘])
8: 𝐴[𝑘 + 1, 𝑘 + 1] ← SYRK(𝐴[𝑘 + 1, 𝑘], 𝐴[𝑘 + 1, 𝑘 + 1])
9: 𝐴[𝑘 + 1, 𝑘 + 1] ← POTRF(𝐴[𝑘 + 1, 𝑘 + 1])
10: for 𝑖 = 𝑘 + 2 to 𝑛 − 1 in parallel do
11: 𝐴[𝑖, 𝑘] ← TRSM(𝐴[𝑘, 𝑘], 𝐴[𝑖, 𝑘])
12: 𝐴[𝑖, 𝑖] ← SYRK(𝐴[𝑖, 𝑘], 𝐴[𝑖, 𝑖])
13: end for
14: for 𝑗 = 𝑘 + 2 to 𝑛 − 1 in parallel do
15: 𝐴[𝑗, 𝑘 + 1] ← GEMM(𝐴[𝑗, 𝑘], 𝐴[𝑘 + 1, 𝑘])
16: 𝐴[𝑗, 𝑘 + 1] ← TRSM(𝐴[𝑘 + 1, 𝑘 + 1], 𝐴[𝑗, 𝑘 + 1])
17: 𝐴[𝑗, 𝑗] ← SYRK(𝐴[𝑗, 𝑘 + 1], 𝐴[𝑗, 𝑗])
18: end for
19: for 𝑗 = 𝑘 + 2 to 𝑛 − 1 in parallel do
20: for 𝑖 = 𝑗 + 1 to 𝑛 − 1 in parallel do
21: 𝐴[𝑖, 𝑗] ← GEMM(𝐴[𝑖, 𝑘], 𝐴[𝑗, 𝑘])
22: 𝐴[𝑖, 𝑗] ← GEMM(𝐴[𝑖, 𝑘 + 1], 𝐴[𝑗, 𝑘 + 1])
23: end for
24: end for
25: end for
26: Return 𝐴

3.2 Operator Fusion
In the following sections of the paper, we will use 𝑁 to
represent the size of the input matrix, 𝑛𝑏 to denote the tile
size, and 𝑛 to represent the size of the matrix after being
tiled.
Our operator fusion scheme is inspired by the works of

Erin Carson in 2018 and 2022[5, 6]. First, we set the lookahead
to 1 in the Tiled Cholesky algorithm, meaning that in each
iteration of the for loop in Algorithm 1, we execute one step
ahead, effectively doubling the for loop’s step size. Then, we
applied fusion to the process. Lines 5 to 26 of Algorithm 2
represent the pseudocode for this process. Specifically, there
are four main fusion strategies as follows:
(1) PTSP (Lines 6 to 9 of Algorithm 2): In Algorithm 1,

we will expand the loop and merge POTRF(𝐴[𝑘, 𝑘]),

IA-Chol: Input-Aware Cholesky Decomposition on CPU and GPU ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

TRSM(A[k,k], A[k+1,k]), SYRK(A[k+1,k], A[k+1,k+1]),
and POTRF(A[k+1,k+1]) to form 6-9 lines in Algo-
rithm 2. It reduces memory operations compared to
the Cholesky(Algorithm 1) by saving 2𝑛2

𝑏
memory ac-

cesses.With𝑘 looping 𝑛
2 times, this reduces𝑛𝑛2

𝑏
= 𝑁𝑛𝑏

memory accesses.
(2) TRSM-SYRK (Lines 10 to 13 of Algorithm 2): In

Algorithm 1, we merge the TRSM operation in the
seventh row with the SYRK operation in the tenth
row to form a new TRSM-SYRK operation. As shown
in lines 10 to 12 of Algorithm 2. The for loops of
both operations access the same indices and involve
𝐴[𝑖, 𝑘]. By fusing them, after TRSM completes, 𝐴[𝑖, 𝑘]
remains in the cache, reducing additional read and
write operations. During the 𝑘-th iteration, fusing
TRSM(𝐴[𝑘, 𝑘], 𝐴[𝑖, 𝑘]) and SYRK(𝐴[𝑖, 𝑘], 𝐴[𝑖, 𝑖]) re-
duces the write of 𝐴[𝑖, 𝑘] in TRSM and the read of
𝐴[𝑖, 𝑘] in SYRK, saving 2𝑛2

𝑏
memory accesses. With

(𝑛 −𝑘 − 1) tiles, the total reduction is 2𝑛2
𝑏
× (𝑛 −𝑘 − 1).

Summing over 𝑘 , the reduction is
∑𝑛−1

𝑘=0 2𝑛
2
𝑏
× (𝑛 − 𝑘 −

1) = 𝑛2
𝑏
𝑛(𝑛 − 1) ≈ 𝑁 2 − 𝑁𝑛𝑏 . Thus, operator fusion in

this step reduces 𝑁 2 − 𝑁𝑛𝑏 memory accesses, which
is significant for small matrices.

(3) pannelGEMM-TRSM-SYRK (Lines 14 to 18 of Al-
gorithm 2): Then we first update the data in the
second column on the left, GEMM(𝐴[𝑖, 𝑘], 𝐴[𝑘 + 1, 𝑘]),
TRSM(A[k+1,k+1], A[i,k+1]), SYRK(A[i,k], A[i,i]). We
call this step pannelGEMM-TRSM-SYRK, as shown
in rows 14 to 18 of Algorithm 3. In line 14-18 of al-
gorithm 3. Fusion of panelGEMM(A[i,k], A[k+1,k]),
TRSM(A[k+1,k+1], A[i,k+1]), and SYRK(A[i,k+1],
A[i,i]) reduces memory accesses by 2𝑛2

𝑏
. With 𝑖 looping

𝑛−𝑘−2 times, this results in 2𝑛2
𝑏
(𝑛−𝑘−2) memory ac-

cesses saved. Summing over 𝑘 with 𝑘 = 0, 2, 4, . . . , 𝑛−1,
the total reduction is

∑(𝑛−1)/2
𝑙=0 2𝑛2

𝑏
(𝑛 − 2𝑙 − 2) ≈

𝑛2
𝑏
𝑛2/2 = 𝑁 2/2.

(4) trailingGEMM (Lines 19 to 24 of Algorithm
2): Next,we update the remaining data, merging
GEMM(A[i, k], A[j, k]) and GEMM(𝐴[𝑖, 𝑘 +1], 𝐴[𝑗, 𝑘 +
1]),namely trailingGEMM, in lines 19 to 24 of Algo-
rithm 2. From line 19 to line 24 of Algorithm 2, fusion
of trailingGEMM reduces memory accesses by fusing
two GEMM operations, saving one write and one read
per𝐴[𝑖, 𝑗]. With 𝑘 looping 𝑛

2 times, the total reduction
is
∑(𝑛−1)/2

𝑙=0 2𝑛2
𝑏
(𝑛 − 𝑙)𝑛/2 ≈ 𝑛3

𝑏
𝑛3/12 = 𝑁 3/12.

Therefore, 𝑙𝑜𝑜𝑘𝑎ℎ𝑒𝑎𝑑 = 1 and operator fusion reduce ap-
proximately 𝑁 3/12 + 𝑁 2 − 𝑁𝑛𝑏 + 𝑁 2/2 + 𝑁𝑛𝑏 memory op-
erations. The total reduction is approximately 1

12𝑁
3 + 3

2𝑁
2

memory operations.

3.3 Input-Aware Adaptive Tile Size
To achieve a universal approach for tile size prediction on
both CPU and GPU, we simplified the computer model, as
shown in Figure 4. Both CPUs and GPUs consist of mem-
ory, cache, and multiple computing cores. Specifically, the
cache for CPUs refers to the largest L3 cache, while for GPUs,
it refers to the L2 cache. Since memory bandwidth is typ-
ically much lower than cache bandwidth, we assume that
the data exchange speed between each core (CPU or GPU
SM) and the cache is infinitely fast. Therefore, only the data
exchange speed between the cache and memory, i.e., the
memory bandwidth, is considered. Although actual com-
puter are significantly more complex, this simplification was
made to enable a unified tile size prediction across CPUs and
GPUs.

Core Core Core CoreCore …
…

Cache

Memory
v (memory
bandwidth)

Figure 4: Simple computer model.

Next, we analyze the number of tasks and data transfer
processes during the execution of IA-Chol. Figure 5 illustrates
the directed acyclic graph (DAG) for a 6 × 6 matrix in the
IA-Chol algorithm.

Analysis reveals that for an 𝑁 × 𝑁 matrix during the 𝑘-th
iteration of IA-Chol, after PTSP(k, k) is completed, its data
will be used to update TRSM-SYRK(k+2, k), TRSM-SYRK(k+3,
k), . . ., TRSM-SYRK(n, k), totaling 𝑁 − 𝑘 − 2 TRSM-SYRK
operations, as well as PTSP(k+2, k+2).
Subsequently, each TRSM-SYRK interacts with the

pannelGEMM-TRSM-SYRK and trailingGEMM of its corre-
sponding row and column for updates. The pannelGEMM-
TRSM-SYRK, in turn, updates the remaining tiles requiring
trailingGEMM operations.The total number of PTSP, TRSM-
SYRK,pannelGEMM-TRSM-SYRK, and trailingGEMM in this
process is summarized in Table 1.
Based on the aforementioned model, the impact of tile

size on IA-Chol performance is primarily influenced by three
factors: data exchange between memory and cache, the com-
putation speed of the cores, and data exchange and task
scheduling among multiple cores. Naturally, the actual sce-
nario is far more complex, but we focus here on the most

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jixiao Deng, Qinglin Wang, Lin Chen, Bo Yang, Xinhai Chen, Tun Li, and Jie Liu

PTSP
(0,0)

TRSM-
SYRK(2,0)

TRSM-
SYRK(3,0)

TRSM-
SYRK(4,0)

TRSM-
SYRK(5,0)

pannelGEM
M-TRSM-
SYRK(2,1)

pannelGEM
M-TRSM-
SYRK(4,1)

pannelGEM
M-TRSM-
SYRK(5,1)

pannelGEM
M-TRSM-
SYRK(3,1)

trailin
gGEM
M(3,2)

trailin
gGEM
M(4,2)

trailin
gGEM
M(5,3)

trailin
gGEM
M(4,3)

trailin
gGEM
M(5,2)

trailin
gGEM
M(5,4)

PTSP(
2,2)

TRSM-
SYRK(4,2)

TRSM-
SYRK(5,2)

pannelGEM
M-TRSM-
SYRK(4,3)

pannelGEM
M-TRSM-
SYRK(5,3)

PTSP(
4,4)

trailin
gGEM
M(5,4)

Figure 5: This is a directed acyclic graph (DAG) repre-
sentation of the IA-Chol algorithm for a 6 × 6matrix.

Table 1: Total Number of Tasks for PTSP, TRSM-SYRK,
pannelGEMM-TRSM-SYRK, and trailingGEMM

Type of task Number of tasks
PTSP

⌊
𝑁
2
⌋

TRSM-SYRK ⌊𝑁 /2⌋ (𝑁 − 1 − ⌊𝑁 /2⌋)
pannelGEMM-TRSM-SYRK ⌊𝑁 /2⌋ (𝑁 − 1 − ⌊𝑁 /2⌋)

trailingGEMM ⌊ 𝑁 −22 ⌋ (⌊ 𝑁 −22 ⌋+1) (4⌊ 𝑁 −22 ⌋−1)
6

critical factors. Next, we will discuss these three aspects in
detail.

First, we discuss the data exchange between memory and
cache. Let the size of the input matrix be 𝑁 , the tile block
size be 𝑛𝑏 × 𝑛𝑏 , and the cache bandwidth be 𝑣 . The input
matrix is partitioned into 𝑛 × 𝑛 tiles. The time required to
transfer a tile block from memory is then given by:

𝑛 = ⌈𝑁 /𝑛𝑏⌉, (1)

𝑠𝑖𝑧𝑒𝑜 𝑓 𝑛𝑏 =
𝑛𝑏 × 𝑛𝑏 × 8

10243
, (2)

𝑡𝑖𝑚𝑒𝑜 𝑓 𝑛𝑏 =
𝑠𝑖𝑧𝑒𝑜 𝑓 𝑛𝑏

𝑣
. (3)

Since data is not always read from memory during the
computation process, and sometimes data can be directly ac-
cessed from the cache, we define𝑁𝑢𝑚𝑠𝑢𝑚 as the total number
of data operations required throughout the IA-Chol process,
𝑁𝑢𝑚ℎ𝑖𝑡 as the number of times data is directly accessed from
the cache, and 𝑁𝑢𝑚𝑚𝑒𝑚𝑜𝑟𝑦 as 𝑁𝑢𝑚𝑠𝑢𝑚 −𝑁𝑢𝑚ℎ𝑖𝑡 , which rep-
resents the number of times data must be read from memory.

From Algorithm 2, it can be observed that PTSP requires
access to three data elements: 𝐴[𝑘, 𝑘], 𝐴[𝑘 + 1, 𝑘], and
𝐴[𝑘+1, 𝑘+1] in each iteration. TRSM-SYRK requires access to
three data elements:𝐴[𝑘, 𝑘],𝐴[𝑖, 𝑘], and𝐴[𝑖, 𝑖]. PanelGEMM-
TRSM-SYRK requires access to five data elements: 𝐴[𝑗, 𝑘],
𝐴[𝑘 + 1, 𝑘], 𝐴[𝑘 + 1, 𝑘 + 1], 𝐴[𝑗, 𝑘 + 1], and 𝐴[𝑗, 𝑗]. trail-
ingGEMM requires access to five data elements: 𝐴[𝑖, 𝑘],
𝐴[𝑗, 𝑘], 𝐴[𝑖, 𝑘 + 1], 𝐴[𝑗, 𝑘 + 1], and 𝐴[𝑖, 𝑗]. Based on the
number of occurrences of each task in Table 1, the value
of Num_sum can be determined as follows:

𝑁𝑢𝑚𝑜𝑓 𝑃𝑇𝑆𝑃 = 3 ×
⌊𝑛
2

⌋
, (4)

𝑁𝑢𝑚𝑜𝑓𝑇𝑅𝑆𝑀 − 𝑆𝑌𝑅𝐾 = 3 × ⌊𝑛/2⌋ (𝑛 − 1 − ⌊𝑛/2⌋), (5)

𝑁𝑢𝑚𝑜𝑓 𝑝𝑎𝑛𝑛𝑒𝑙𝐺𝐸𝑀𝑀−𝑇𝑅𝑆𝑀−𝑆𝑌𝑅𝐾 = 5×⌊𝑛/2⌋ (𝑛−1−⌊𝑛/2⌋),
(6)

𝑁𝑢𝑚𝑜𝑓 𝑡𝑟𝑎𝑖𝑙𝑖𝑛𝑔𝐺𝐸𝑀𝑀 = 5×
⌊
𝑛−2
2
⌋ (⌊

𝑛−2
2
⌋
+ 1

) (
4
⌊
𝑛−2
2
⌋
− 1

)
6

,

(7)

𝑁𝑢𝑚𝑠𝑢𝑚 = (4) + (5) + (6) + (7). (8)
Next, we discuss the number of cache hits. First, we assume

that the cache can hold a maximum of 𝑚 tile blocks, and
the cache replacement policy is Least Recently Used (LRU).
We assume that all tile blocks follow a Zipf distribution.
The process involves repeated accesses to tile blocks; if the
requested tile block is not in the cache, it must first be loaded
from memory. If the tile block is already in the cache, it
can be accessed directly. The objective of the problem is
to calculate the expected number of direct accesses when
requesting 𝑁𝑢𝑚_𝑠𝑢𝑚 tile blocks. The total number of tiles
is NumofTile.

𝑚 =

⌊
𝐶𝑎𝑐ℎ𝑒𝑆𝑖𝑧𝑒

𝑠𝑖𝑧𝑒𝑜 𝑓 𝑛𝑏

⌋
, (9)

𝑁𝑢𝑚𝑜𝑓𝑇𝑖𝑙𝑒 = 𝑛 × (𝑛 + 1)/2. (10)
Each tile has a distinct probability of being accessed, which

follows Zipf’s distribution. The probability 𝑃 (𝑖) for the 𝑖-th
tile block is given by:

𝑃 (𝑖) = 𝑖−𝛼∑𝑁𝑢𝑚𝑜𝑓𝑇𝑖𝑙𝑒

𝑗=1 𝑗−𝛼
, (11)

where 𝛼 is a parameter controlling the skewness of the distri-
bution. A higher 𝛼 leads to a greater concentration of access
probability on the lower-index tile blocks (i.e., "hotspots").
Given that the cache can hold up to𝑚 tile blocks, we are

interested in determining the probability of direct access,

IA-Chol: Input-Aware Cholesky Decomposition on CPU and GPU ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

which occurs when the desired tile block is already present
in the cache. In a Least Recently Used (LRU) replacement
strategy, the tile blocks in the cache are replaced based on
their access history, with the most frequently accessed tile
blocks having a higher chance of being present in the cache.
The probability of direct access for a tile block 𝑖 is approxi-
mated as:

𝑃hit (𝑖) =
∑𝑚

𝑗=1 𝑃 (𝑗)∑𝑁𝑢𝑚𝑜𝑓𝑇𝑖𝑙𝑒

𝑗=1 𝑃 (𝑗)
. (12)

For each of the 𝑘 accesses, the expected number of direct
accesses is:

E[𝑋] =
𝑁𝑢𝑚𝑜𝑓𝑇𝑖𝑙𝑒∑︁

𝑖=1
𝑃 (𝑖) · 𝑃hit (𝑖), (13)

where 𝑋 is a random variable indicating whether tile block
𝑖 is directly accessed. The total expected number of direct
accesses over 𝑘 accesses is then:

E[direct accesses] = 𝑘 · E[𝑋] . (14)

There are some special cases:
(1) When 𝑚 ≥ 𝑁𝑢𝑚𝑜𝑓𝑇𝑖𝑙𝑒: All tile blocks are in the

cache, and every access is a direct access. Therefore,
the expected number of direct accesses is simply 𝑘 .

(2) When𝑚 = 1: Only one tile block is in the cache at a
time, and the probability of direct access is determined
solely by the most frequently accessed tile block.

(3) When 𝛼 = 0 (Uniform Distribution): All tile
blocks have the same access probability, and the ex-
pected number of direct accesses becomes propor-
tional to the fraction of tile blocks in the cache, i.e.,
E[direct accesses] = 𝑘 · 𝑚

𝑁𝑢𝑚𝑜𝑓𝑇𝑖𝑙𝑒
.

Through multiple rounds of experimental testing, we
found that 𝛼 = 0.9 is more suitable, which also indicates
that IA-Chol belongs to a type of hot-spot distribution.
So, we need to access a total of Num_sum data, and the

number of hits that are directly read from the cache is given
by :

𝑁𝑢𝑚ℎ𝑖𝑡 = 𝑁𝑢𝑚𝑠𝑢𝑚 × E[𝑋], (15)

𝑁𝑢𝑚ℎ𝑖𝑡 = 𝑁𝑢𝑚𝑠𝑢𝑚 ×
𝑁𝑢𝑚𝑜𝑓𝑇𝑖𝑙𝑒∑︁

𝑖=1
𝑃 (𝑖) · 𝑃hit (𝑖). (16)

Therefore, the data transfer time between memory and
cache is approximately :

𝑁𝑢𝑚𝑚𝑒𝑚𝑜𝑟𝑦 = 𝑁𝑢𝑚𝑠𝑢𝑚 − 𝑁𝑢𝑚ℎ𝑖𝑡 , (17)

𝐷𝑎𝑡𝑎𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒𝑜 𝑓 𝑛𝑏 × 𝑁𝑢𝑚𝑚𝑒𝑚𝑜𝑟𝑦 . (18)

In addition to the significant impact of data exchange be-
tween memory and cache on performance, the computation
of data also plays a crucial role in determining the final per-
formance. Since IA-Chol only performs operator fusion, the
overall computational load remains the same as the original
Cholesky decomposition, as shown below:

TotalComputation =
1
3
𝑁 3 + 1

2
𝑁 2 + 1

6
𝑁 . (19)

Thus, the time required for computation can be expressed
as:

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙𝑃𝑒𝑎𝑘𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒
. (20)

Next, we discuss the impact of task scheduling and data
exchange among multiple cores on overall performance.
As observed in Figure 4, for the 𝑘-th iteration, PTSP re-
quires task scheduling with 𝑛 − 𝑘 − 1 tile blocks, where
the step size of 𝑘 is 2. In total, there are

⌈
𝑛
2
⌉
iterations, and

each iteration involves one PTSP. For TRSM-SYRK, task
scheduling is performed with 𝑛 − 𝑘 tile blocks, resulting in
𝑛 − 𝑘 − 2 TRSM-SYRK operations. For pannelGEMM-TRSM-
SYRK, each task scheduling involves 𝑛 − 𝑘 − 1 tile blocks,
leading to 𝑛 − 𝑘 − 2 pannelGEMM-TRSM-SYRK operations.
Finally, trailingGEMM schedules tasks with one tile block per
operation, with a total of (𝑛 −𝑘 − 2) (𝑛 −𝑘)/2 trailingGEMM
operations. Therefore, the total number of associated tasks
for each of them is as follows:

ASSPTSP =

⌈ 𝑛2 ⌉∑︁
𝑘=0, 𝑘 step 2

(𝑛 − 𝑘 − 1), (21)

ASSTRSM-SYRK =

⌈ 𝑛2 ⌉∑︁
𝑘=0, 𝑘 step 2

(𝑛 − 𝑘) (𝑛 − 𝑘 − 2), (22)

ASSpannelGEMM-TRSM-SYRK =

⌈ 𝑛2 ⌉∑︁
𝑘=0, 𝑘 step 2

(𝑛 − 𝑘 − 1) (𝑛 − 𝑘 − 2),

(23)

ASStrailingGEMM =

⌈ 𝑛2 ⌉∑︁
𝑘=0, 𝑘 step 2

(𝑛 − 𝑘 − 2) (𝑛 − 𝑘)
2

. (24)

The total number of associated tasks is:

𝐴𝑆𝑆𝑠𝑢𝑚 = (21) + (22) + (23) + (24). (25)

In a multi-core system, the task scheduling and data syn-
chronization time is related both to the number of task sched-
ules and the number of cores(Here, we define the influencing

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jixiao Deng, Qinglin Wang, Lin Chen, Bo Yang, Xinhai Chen, Tun Li, and Jie Liu

factor on the GPU as the number of SMs (Streaming Mul-
tiprocessors).). Therefore, we can express this relationship
using the following formula:

TaskSchedulingtime = 𝛽 · 𝑛𝑢𝑚𝑐𝑜𝑟𝑒 · log (ASSsum) . (26)

It is important to note that this formula does not represent
the actual task scheduling time but is used to indicate a
relative time for comparing which tile size results in the
least time. The reason for using log(ASSsum) is that, during
the experiments, we observed that the task scheduling time
indeed increases with the increase of ASSsum. However, the
rate of increase starts off fast and then gradually slows down,
which closely resembles the shape of the log(𝑥) function
curve. Through experiments, it was found that a value of 𝛽
around 1 × 10−6 is reasonable. In practice, task scheduling
in a computer typically takes between a few microseconds
and milliseconds. The value of 𝛽 confirms this observation,
indicating that our approach of predicting relative time is
reasonable.
Finally, in addition to TaskScheduling𝑡𝑖𝑚𝑒 ,

Computation𝑡𝑖𝑚𝑒 , DataExchange𝑡𝑖𝑚𝑒 , we also need to
introduce a correction term:

𝑏 = 𝛾 ·
(
𝑛𝑏 −

Peak
CacheSize

· 1.9
)2
. (27)

This adjustment is made to fine-tune the calculations. A
value of 𝛾 = 0.05 is suitable. The term 𝑛𝑏 − Peak

CacheSize is an
empirical factor, and the selection of 𝑛𝑏 is related to the
ratio of Peak to CacheSize. The ratio of Peak to CacheSize
can, to some extent, represent the computational cache ratio.
Based on empirical data and multiple experiments, this ratio
significantly influences the choice of 𝑛𝑏 . Similarly, the value
of 1.9 is also an empirical constant.
Therefore, we estimate that when the tile block size is

chosen as 𝑛𝑏 , the possible execution time for IA-Chol is given
by:

𝑓 (𝑛𝑏) = max((18), (20)) + (26) + (27), (28)
where 𝑛𝑏 is either a power of 2, i.e., 2𝑎 , or 2𝑎 + 2𝑎−1, and
𝑛𝑏 ≤ CacheSize .

The choice of powers of 2 (2𝑎) or a combination of 2𝑎 and
2𝑎−1 for tile sizes is primarily to better align with the cache
and memory access patterns of modern processors.
• 2𝑎 : This is the most common choice because computer
systems, particularly caches and memory hardware,
are often optimized formemory blocks of size 2𝑛 . Using
2𝑎 ensures memory and cache accesses are aligned,
reducing access latency and cache misses, while also
improving parallel computation efficiency.
• 2𝑎 + 2𝑎−1: This combination is used in some hardware
or algorithms to leverage the alignment benefits of 2𝑎
while adding an extra memory block size (2𝑎−1) to en-
hance cache locality or utilization. This approach can

help balance performance, especially when memory
access patterns are not entirely regular.

Overall, these size choices aim to take full advantage of
hardware optimizations, reduce cache misses, enhance com-
putational efficiency, and make memory accesses more effi-
cient.

Therefore, as discussed above, we only need to select the
value of 𝑛𝑏 that minimizes 𝑓 (𝑛𝑏), which will be the most
suitable choice for 𝑛𝑏 . Since the possible values of 𝑛𝑏 are
either powers of 2, i.e., 2𝑎 , or 2𝑎+2𝑎−1, this can be donewithin
log2 (CacheSize) time, making it a very efficient process.

4 Result
4.1 Experimental Setup
Table 2 and Table 3 are the performance parameters of dif-
ferent devices used in our experiment.To reduce the im-
pact of noise, system load variations, and thermal man-
agement on performance, we iterate five or more times
and take the average. The software used in our experi-
ments includes: PLASMA-23.8.2, OpenBLAS-0.3.26, SLATE-
2024.05.31, libFLAME-5.2.0, oneMKL 2020.0.4, MAGMA-2.8.0,
cuSOLVER 11.5.0.

Table 2: Evaluation environment of CPU

CPU
Intel Xeon
Silver 4210R

Intel Xeon
Gold 6240R

Phytium
2000+

Arch. x86_64 x86_64 aarch64
Cores 20 48 64
Sockets 2 2 1
Clock 2.4 GHz 2.4 GHz 2.2 GHz

L1 cache 32 K/core 32 K/core 32 K/core
L2 cache 1024 K/core 1024 K/core 2048 K/core
L3 cache 14080 K 36608 K None
Compiler GCC 9.3.0 GCC 9.3.0 GCC 9.3.0
Memory
bandwidth 140.78 GB/s 115.2 GB/s 18.5 GB/s

4.2 Performance Improvement
Figure 6 shows the performance comparison results on the
Intel Xeon Silver 4210R. The selected tile sizes are as fol-
lows: for matrices smaller than 1000, SLATE uses 128, while
PLASMAand libFLAMEuse 64; formatrix sizes between 1000
and 5000, SLATE uses 256, while PLASMA and libFLAME
use 128; for matrices larger than 5000, SLATE and PLASMA
use 256 and 192, respectively, while libFLAME uses 128. Fig-
ure 7 illustrates the performance comparison results on the
Intel Xeon Gold 6240R. The selected tile sizes are as follows:
for matrix sizes smaller than 3000, SLATE uses 128, while

IA-Chol: Input-Aware Cholesky Decomposition on CPU and GPU ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 3: Evaluation environment of GPU

GPU
NVIDIA A100
80GB PCIe

NVIDIA H100
PCIe

Number of SM 108 132
FP64 peak

computational 19.5TFLOPS 51.2TFLOPS
performance
L1 cache 192 K/core 256 K/core
L2 cache 40960 K 51200 K

Memory bandwidth 1935 GB/s 2000 GB/s
Compiler NVCC 12.2 NVCC 12.2

PLASMA and libFLAME use 96; for matrix sizes larger than
3000, SLATE uses 256, PLASMA uses 192, and libFLAME uses
128. Figure 8 shows the performance comparison results on
the Phytium 2000+ platform. The selected tile sizes are as
follows: for matrix sizes smaller than 2000, SLATE uses 128,
while PLASMA and libFLAME use 64; for matrix sizes be-
tween 2000 and 5000, SLATE uses 256, and both PLASMA
and libFLAME use 128; for matrix sizes larger than 5000,
SLATE uses 256, and both PLASMA and libFLAME use 192.
Figure 9 presents the performance comparison results on
the NVIDIA A100. The selected tile sizes are as follows: for
matrices smaller than 10,000, SLATE uses a tile size of 896;
for matrices larger than 10,000, SLATE uses a tile size of 1024.
MAGMA, on the other hand, employs its internal adaptive
tile size function. Figure 10 illustrates the performance com-
parison results on the NVIDIA H100. The selected tile sizes
are as follows: for matrices smaller than 10,000, SLATE uses
a tile size of 960; for matrices larger than 10,000, SLATE uses
a tile size of 1024. MAGMA, on the other hand, utilizes its in-
ternal adaptive tile size function. These tile sizes correspond
to the average performance-optimal values for each library
in their respective ranges.

0 2000 4000 6000 8000 10000 12000 14000
Matrix Size (n)

0

100

200

300

400

G
FL

O
PS

Performance Comparison for Different Matrix Sizes

IA-Chol (this work)
PLASMA
OpenBLAS
libFLAME
SLATE

Figure 6: Performance comparison results on the Intel
Xeon Silver 4210R.

0 2000 4000 6000 8000 10000 12000 14000
Matrix Size (n)

0

500

1000

1500

G
FL

O
PS

Performance Comparison for Different Matrix Sizes

IA-Chol (this work)
PLASMA
OpenBLAS
libFLAME
SLATE

Figure 7: Performance comparison results on the Intel
Xeon Gold 6240R.

0 2000 4000 6000 8000 10000 12000 14000
Matrix Size (n)

0

50

100

150

200
G

FL
O

PS

Performance Comparison for Different Matrix Sizes

IA-Chol (this work)
PLASMA
OpenBLAS
libFLAME
SLATE

Figure 8: Performance comparison results on the
Phytium 2000+ platform.

0 10000 20000 30000 40000 50000

Matrix Size (n)

0

2500

5000

7500

10000

12500

15000

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

Performance Comparison

IA-Chol (our work)
cuSLOVER
MAGMA
SLATE

Figure 9: Performance comparison results on the
NVIDIA A100.

Tables 4 to 6 present the average performance compar-
isons of IA-Chol with other state-of-the-art libraries across
different matrix sizes on three distinct CPU platforms. The

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jixiao Deng, Qinglin Wang, Lin Chen, Bo Yang, Xinhai Chen, Tun Li, and Jie Liu

0 10000 20000 30000 40000 50000

Matrix Size (n)

0

5000

10000

15000

20000

25000

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

Performance Comparison

IA-Chol (our work)
cuSLOVER
MAGMA
SLATE

Figure 10: Performance comparison results on the
NVIDIA H100.

results demonstrate that IA-Chol achieves significant perfor-
mance improvements for small to medium-sized matrices on
CPU platforms. For matrices larger than 5000, while IA-Chol
still outperforms the competing libraries, the performance
gains are relatively modest. This is because, as the matrix
size increases, the proportion of trailing GEMM (i.e., matrix
multiplication) in the overall computation becomes more
dominant, gradually leading to compute-bound limitations.
Notably, our optimization efforts focus on reducing cache
accesses through the trailing GEMM strategy, without specif-
ically optimizing matrix multiplication on CPUs.
Tables 7 and 8 present the average performance compar-

isons of IA-Chol with other state-of-the-art libraries across
different matrix sizes on two GPU platforms. The results indi-
cate that for matrices smaller than 10,000, IA-Chol performs
slightly worse than cuSOLVER. This is primarily because IA-
Chol is implemented based on SLATE, which is specifically
designed for large-scale matrix computations. Consequently,
its task scheduling introduces additional overhead for smaller
matrices, leading to higher execution times compared to cu-
SOLVER. While this represents a limitation of IA-Chol on
GPUs, it is acceptable in practical scenarios, as GPUs are
typically utilized for large-scale matrix computations. For
matrices larger than 10,000, IA-Chol demonstrates signifi-
cant performance improvements. For instance, on the A100
platform, cuSOLVER achieves an efficiency of only 75.8%,
whereas IA-Chol reaches 85.1%.

4.3 Comparison and Analysis of Tile
Prediction Performance

Figure 11 illustrates the performance comparison between
IA-Chol and ILAENV for adaptive tile size optimization on
the Intel(R) Xeon(R) Silver 4210R platform. ILAENV, an aux-
iliary function in LAPACK, dynamically selects optimization

Implementation Intel(R) Xeon(R) Silver 4210R
matrix size 500-1000 1000-5000 5000-15000
IA-Chol

(this work) 83.46 300.11 424.39

OpenBLAS 37.79 181.80 388.41
LibFLAME 52.04 194.55 360.60
SLATE 17.13 143.12 355.54
PLASMA 49.90 235.19 373.61

Improvement over
best baseline 60.38% 27.61% 9.26%

Table 4: This is a comparison of the average perfor-
mance of IA-Chol and other libraries at different ma-
trix sizes on Intel(R) Xeon(R) Silver 4210R, measured
in GFLOPS.

Implementation Intel(R) Xeon(R) Gold 6240R
matrix size 500-1000 1000-5000 5000-15000
IA-Chol

(this work) 104.32 774.75 1752.86

OpenBLAS 53.18 403.47 1006.58
LibFLAME 62.91 370.23 641.54
SLATE 28.12 334.38 1160.36
PLASMA 66.85 609.39 1590.91
oneMKL 62.04 319.05 726.65

Improvement over
best baseline 56.06% 27.13% 10.18%

Table 5: This is a comparison of the average perfor-
mance of IA-Chol and other libraries at different ma-
trix sizes on Intel(R) Xeon(R) Gold 6240R, measured in
GFLOPS.

Implementation Phytium 2000+
matrix size 500-1000 1000-5000 5000-15000
IA-Chol

(this work) 33.02 123.61 202.18

OpenBLAS 4.50 30.03 100.74
LibFLAME 5.56 29.17 122.24
SLATE 12.15 48.28 114.68
PLASMA 21.49 120.26 172.47

Improvement over
best baseline 53.63% 2.78% 17.22%

Table 6: This is a comparison of the average perfor-
mance of IA-Chol and other libraries at different ma-
trix sizes on Phytium 2000+, measured in GFLPOPS.

parameters (e.g., block size NB) based on the target hard-
ware and algorithm requirements. By providing performance-
related default values, ILAENV enhances the execution effi-
ciency of block algorithms while reducing the complexity of

IA-Chol: Input-Aware Cholesky Decomposition on CPU and GPU ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Implementation NVIDIA A100 80GB PCIe
matrix size 1000-10000 10000-50000
IA-Chol

(this work) 3484.78 13628.68

cuSLOVER 4377.01 12798.31
MAGMA 1541.81 12717.77
SLATE 3001.71 12981.61

Improvement over
best baseline None 4.98%

Table 7: This is a comparison of the average perfor-
mance of IA-Chol and other libraries at different ma-
trix sizes on NVIDIA A100, measured in GFLPOPS.

Implementation NVIDIA H100 PCIe
matrix size 1000-10000 10000-50000
IA-Chol

(this work) 3744.72 22614.62

cuSLOVER 6114.75 21435.51
MAGMA 1522.45 19318.89
SLATE 2573.86 17580.84

Improvement over
best baseline None 5.50%

Table 8: This is a comparison of the average perfor-
mance of IA-Chol and other libraries at different ma-
trix sizes on NVIDIA H100, measured in GFLPOPS.

manual parameter tuning. However, as shown in the figure,
IA-Chol significantly outperforms ILAENV.
This improvement is primarily due to the change in the

optimal tile size after operator fusion (as depicted in Figure
2 of Chapter 1), a factor not accounted for by ILAENV. Ad-
ditionally, ILAENV determines tile size primarily based on
hardware performance metrics, with minimal sensitivity to
the input matrix size 𝑁 . For instance, even when the input
matrix size 𝑁 exceeds 10,000, ILAENV still recommends a
tile size of 64, which is suboptimal under the operator fusion
scenario, leading to its inferior performance compared to
IA-Chol.
Figure 12 presents a comparison of adaptive tile size ap-

proaches on the NVIDIA A100.Magma_get_dpotrf_nb is
a function in MAGMA that dynamically adjusts the tile size
based on the input matrix 𝑁 . Statistical Modeling, pro-
posed by Ray-Bing Chen, Yaohung M. Tsai, and Weichung
Wang in 2014[7], uses statistical surrogate models to predict
performance for different block sizes and employs online
monitors to detect and avoid unexpected performance fluc-
tuations.

0 2000 4000 6000 8000 10000 12000 14000
Matrix Size (n)

50

100

150

200

250

300

350

400

450

Pe
rfo

rm
an

ce
 (G

FL
OP

S)

IA-Chol (this work)
ILAENV

Figure 11: Comparison of Adaptive Tile Size Strategies
on Intel(R) Xeon(R) Silver 4210R.

IA-Chol outperforms Statistical Modeling slightly and
significantly surpassesmagma_get_dpotrf_nb. The limi-
tations of Statistical Modeling stem from its model being
primarily designed for QR decomposition, with limited effi-
cacywhen extended to Cholesky decomposition.Moreover, it
requires numerous input parameters (e.g., matrix size, block
size), necessitating extensive experimentation and parame-
ter tuning, which increases complexity and hinders practical
usability.

As formagma_get_dpotrf_nb, its performance is subpar
because it is specifically designed for MAGMA, where the
optimal tile size is generally smaller, making it less effective
in broader scenarios.

0 10000 20000 30000 40000 50000
Matrix Size (n)

0

2000

4000

6000

8000

10000

12000

14000

16000

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

IA-Chol (this work)
magma_get_dpotrf_nb
statistical modeling

Figure 12: Comparison of Adaptive Tile Size Strategies
on NVIDIA A100 80GB PCIe.

4.4 Ablation Study Analysis
Figure 13 presents the ablation study on Intel(R) Xeon(R)
Silver 4210R and NVIDIA A100 80GB PCIe platforms. The
figure compares the average performance under two condi-
tions: operator fusion only and adaptive tile size only, for
different matrix sizes. In the baseline experiments, PLASMA
is used on the Intel(R) Xeon(R) Silver 4210R, while SLATE
is used on the NVIDIA A100 80GB PCIe. The respective tile
sizes are detailed in Section 2 of Chapter 4.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jixiao Deng, Qinglin Wang, Lin Chen, Bo Yang, Xinhai Chen, Tun Li, and Jie Liu

It can be seen that using either of the twomethods indepen-
dently results in some performance improvement. However,
on the CPU, for matrices of size 5000 to 15000, the average
performance of the adaptive tiling is slightly lower than that
of the baseline. This is primarily because our adaptive tiling
method is specifically designed for Cholesky decomposition
after operator fusion, leading to a smaller predicted optimal
tile size. As the matrix size increases, the required tile size
also increases, which explains this phenomenon. So why
doesn’t this issue arise on the GPU? Moreover, for matrices
between 20000 and 50000, the performance of operator fu-
sion on the GPU is slightly lower than the baseline. This is
because the computational-to-memory access ratio on the
GPU is much higher than that of the CPU. In the case of ma-
trices from 20000 to 50000, the smaller tile prediction actually
improves the GPU’s cache hit rate. If the tile size were larger,
the cache might not be able to accommodate it, or frequent
tile exchanges could decrease the hit rate, thus negatively
affecting performance.

500-1000 1000-5000 5000-150000

50

100

150

200

250

300

350

400 Intel(R) Xeon(R) Silver 4210R

1000-5000 6000-15000 20000-500000

2000

4000

6000

8000

10000

12000

14000
NVIDIA A100 80GB PCIe

Pe
rfo

rm
an

ce
 (G

FL
O

PS
)

Operator Fusion Only Adaptive Tile Size Only baseline IA-Chol(this work)

Figure 13: Ablation Study on Intel(R) Xeon(R) Silver
4210R and NVIDIA A100 80GB PCIe.

4.5 In-depth Performance Analysis
Figure 14 shows a comparison of cache hit rates. It can be
observed that as the matrix size 𝑁 increases, the cache miss
rate of IA-Chol decreases, while the cache miss rates of other
libraries increase. This can be attributed to two main factors:
firstly, the operator fusion scheme itself reduces the cache
miss rate, and secondly, IA-Chol adaptively adjusts the tile
size as 𝑁 increases. These factors contribute to the superior
performance of IA-Chol compared to other libraries.

5 Related Work
Cholesky factorization finds use in areas beyond conven-
tional matrix decomposition. Ribizel and Anzt [21] pre-
sented a parallel symbolic Cholesky approach to optimize
graph-based algorithms for sparse systems. Kurzak et al. [16]
showed its adaptability across computing platforms, extend-
ing the work on batched factorization. Lu et al. [18] explored

0 2000 4000 6000 8000 10000 12000 14000
Matrix Size

35

40

45

50

55

60

65

70

Ca
ch

e
M

is
s

(%
)

IA-Chol (this work)
PLASMA
SLATE
libFLAME
OpenBLAS

Figure 14: Comparison of Cache Miss Rates between
IA-Chol and Other Linear Algebra Libraries (Lower is
Better).

Cholesky’s application on AI accelerators, demonstrating
its potential for data-intensive tasks in artificial intelligence
and machine learning workloads.
IA-Chol has demonstrated impressive performance on

CPU architectures, achieving significant efficiency gains in
Cholesky decomposition. Although IA-Chol is task level par-
allelism inherited from PLASMA, our method has good versa-
tility, and its wide application will promote the development
of other platforms, such as LAPACK.
However, with the rapid advancements in GPU technol-

ogy, it is becoming increasingly evident that GPUs may take
the lead in parallel computing in the near future[3, 8, 9, 11, 14,
19, 20, 25, 26, 28–30]. Our IA-Chol has also achieved signifi-
cant performance improvements on GPUs, with efficiency
increasing from 75.8% to 85.1% compared to cuSOLVER. Com-
pared to other state-of-the-art GPU operator libraries such as
MAGMA and SLATE, we observed a 5% to 12% performance
improvement. However, for GPUs like the H100, which fea-
ture higher bandwidth and greater computational power,
larger matrices are required to fully unleash their potential
(this is also true for cuSOLVER, MAGMA, and SLATE). Opti-
mizing algorithms to better leverage such high-performance
hardware is an interesting direction for future research.

Furthermore, in the area of adaptive blocking, there is an
alternative approach that avoids complex modeling by di-
rectly bypassing the need to select tile sizes, instead optimiz-
ing the Cholesky decomposition using a recursive method.
This approach is discussed in detail in the work of Bjarne Stig
Andersen, Jerzy Waśniewski, Fred G. Gustavson[2], Nawaaz
Ahmed, Keshav Pingali[1], and I. Jonsson[13]. We have also
implemented it and observed some improvement; however,
it still does not perform as well as the blocking method.
This is the reason we opted for blocking optimization in our
Cholesky decomposition. Nevertheless, this method remains
highly promising, and if the computation-to-memory access

IA-Chol: Input-Aware Cholesky Decomposition on CPU and GPU ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

ratio improves in future hardware, I believe it will prove to
be valuable.

6 Conclusion
Our initial goal was to address the performance deficiencies
of Cholesky decomposition for small- and medium-sized ma-
trices. To this end, we proposed an operator fusion scheme
tailored to Cholesky decomposition, achieving outstanding
results that outperformed existing operator libraries. How-
ever, this introduced a new challenge: the optimal tile size
shifted, rendering traditional prediction methods ineffective.
To overcome this, we developed a novel tile prediction model,
which delivered highly satisfactory results. Experimental re-
sults demonstrate that IA-Chol not only significantly outper-
forms various linear algebra libraries in computational effi-
ciency across a range of matrix sizes on both CPUs and GPUs,
but also reduces memory access overhead while substantially
improving cache utilization. In multicore environments, IA-
Chol effectively leverages hardware resources, showcasing
exceptional parallel scalability. The design principles and
optimization strategies of IA-Chol provide valuable insights
for further enhancing matrix decomposition algorithms.

Acknowledgments
We sincerely appreciate the invaluable comments provided
by all the reviewers, which have greatly helped us im-
prove our work. This research was supported by the Na-
tional Key Research and Development Program of China:
2023YFB3002300, 2023YFA1011704, 2021YFBO300101. We ex-
tend our heartfelt thanks for their support.

References
[1] Nawaaz Ahmed and Keshav Pingali. 2000. Automatic Generation of

Block-Recursive Codes. In Proceedings of the 6th International Euro-Par
Conference on Parallel Processing (Euro-Par ’00). Springer-Verlag, Berlin,
Heidelberg, 368–378.

[2] Bjarne Stig Andersen, Jerzy Waśniewski, and Fred G. Gustavson. 2001.
A recursive formulation of Cholesky factorization of a matrix in packed
storage. ACM Trans. Math. Software 27, 2 (2001), 214–244. doi:10.1145/
383738.383741

[3] Peter Benner, Pablo Ezzatti, Daniel Kressner, Enrique S. Quintana-
Ortí, and Alfredo Remón. 2011. A mixed-precision algorithm for
the solution of Lyapunov equations on hybrid CPU-GPU platforms.
Parallel Comput. 37, 8 (2011), 439–450.

[4] Qinglei Cao, Yu Pei, Kadir Akbudak, Aleksandr Mikhalev, George
Bosilca, Hatem Ltaief, David E. Keyes, and Jack J. Dongarra. 2020.
Extreme-Scale Task-Based Cholesky Factorization Toward Climate
and Weather Prediction Applications. In Proceedings of the Platform
for Advanced Scientific Computing (PASC 2020). 2:1–2:11.

[5] Erin C. Carson. 2018. The Adaptive s-Step Conjugate Gradient Method.
SIAM J. Matrix Anal. Appl. 39, 3 (2018), 1318–1338. doi:10.1137/
16M1077892

[6] Erin C. Carson, Tomás Gergelits, and Ichitaro Yamazaki. 2022. Mixed
precision s-step Lanczos and conjugate gradient algorithms. Numerical
Linear Algebra with Applications 29, 3 (2022). doi:10.1002/nla.2487

[7] Ray-Bing Chen, YaohungM. Tsai, andWeichungWang. 2014. Adaptive
block size for dense QR factorization in hybrid CPU-GPU systems via
statistical modeling. Parallel Comput. 40, 5-6 (2014), 70–85.

[8] Terry Cojean, Abdou Guermouche, Andra Hugo, Raymond Namyst,
and Pierre-André Wacrenier. 2019. Resource aggregation for task-
based Cholesky Factorization on top of modern architectures. Parallel
Comput. 83 (2019), 73–92.

[9] Terry Cojean, Abdou Guermouche, Andra Hugo, Raymond Namyst,
and Pierre-André Wacrenier. 2019. Resource aggregation for task-
based Cholesky Factorization on top of modern architectures. Parallel
Comput. 83 (2019), 73–92.

[10] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar. 2016. A survey
of direct methods for sparse linear systems. Acta Numer. 25 (2016),
383–566.

[11] Jack J. Dongarra, Mathieu Faverge, Hatem Ltaief, and Piotr Luszczek.
2011. High performance matrix inversion based on LU factorization
for multicore architectures. In Proceedings of the MTAGS Workshop at
SC. 33–42.

[12] G. H. Golub and C. F. Van Loan. 2013. Matrix Computations. Johns
Hopkins University Press, Baltimore, MD.

[13] F. G. Gustavson and I. Jonsson. 2000. Minimal-storage high-
performance Cholesky factorization via blocking and recursion. IBM
Journal of Research and Development 44, 6 (2000), 823–850. doi:10.1147/
rd.446.0823

[14] Azzam Haidar, Ahmad Abdelfattah, Mawussi Zounon, Stanimire To-
mov, and Jack J. Dongarra. 2018. A Guide for Achieving High Perfor-
mance with Very Small Matrices on GPU: A Case Study of Batched
LU and Cholesky Factorizations. IEEE Transactions on Parallel and
Distributed Systems 29, 5 (2018), 973–984.

[15] Richard Hartley and Andrew Zisserman. 2004. Multiple View Geometry
in Computer Vision. Cambridge University Press.

[16] Jakub Kurzak, Hartwig Anzt, Mark Gates, and Jack J. Dongarra. 2016.
Implementation and Tuning of Batched Cholesky Factorization and
Solve for NVIDIA GPUs. IEEE Transactions on Parallel and Distributed
Systems 27, 7 (2016), 2036–2048.

[17] Yuechen Lu, Yuchen Luo, Haocheng Lian, Zhou Jin, and Weifeng Liu.
2021. Implementing LU and Cholesky factorizations on artificial intel-
ligence accelerators. CCF Transactions on High Performance Computing
3, 3 (2021), 286–297.

[18] Yuechen Lu, Yuchen Luo, Haocheng Lian, Zhou Jin, and Weifeng Liu.
2021. Implementing LU and Cholesky factorizations on artificial intel-
ligence accelerators. CCF Transactions on High Performance Computing
3, 3 (2021), 286–297.

[19] Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU
Heterogeneous Computing Techniques. Comput. Surveys 47, 4 (2015),
69:1–69:35.

[20] Ali Mohammadjafari and Poorya Khajouie. 2024. Optimizing Task
Scheduling in Heterogeneous Computing Environments: A Compara-
tive Analysis of CPU, GPU, and ASIC Platforms Using E2C Simulator.
CoRR abs/2405.08187 (2024).

[21] Tobias Ribizel and Hartwig Anzt. 2023. Parallel Symbolic Cholesky
Factorization. In SC Workshops 2023. 1721–1727.

[22] Matthias W. Seeger. 2004. Gaussian Processes For Machine Learning.
International Journal of Neural Systems 14, 2 (2004), 69–106. https:
//api.semanticscholar.org/CorpusID:63955376

[23] Sailes K. Sengijpta. 1993. Fundamentals of Statistical Signal Processing:
Estimation Theory. Technometrics 37, 4 (1993), 465–466.

[24] Lino M. Silva and Aurelio R. L. Oliveira. 2021. Modified controlled
Cholesky factorization for preconditioning linear systems from the
interior-point method. Comput. Appl. Math. 40, 4 (2021).

[25] Yuki Tsujita and Toshio Endo. 2015. Data Driven Scheduling Approach
for the Multi-node Multi-GPU Cholesky Decomposition. Journal of

https://doi.org/10.1145/383738.383741
https://doi.org/10.1145/383738.383741
https://doi.org/10.1137/16M1077892
https://doi.org/10.1137/16M1077892
https://doi.org/10.1002/nla.2487
https://doi.org/10.1147/rd.446.0823
https://doi.org/10.1147/rd.446.0823
https://api.semanticscholar.org/CorpusID:63955376
https://api.semanticscholar.org/CorpusID:63955376

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Jixiao Deng, Qinglin Wang, Lin Chen, Bo Yang, Xinhai Chen, Tun Li, and Jie Liu

Supercomputing: Special Issue on High Performance Computing for Sci-
entific Applications (2015), 69–82.

[26] Sundaresan Venkatasubramanian and Richard W. Vuduc. 2009. Tuned
and wildly asynchronous stencil kernels for hybrid CPU/GPU systems.
In Proceedings of the ACM International Conference on Supercomputing
(ICS). 244–255.

[27] Xiaoqun Wang and Ian H. Sloan. 2011. Quasi-Monte Carlo Methods
in Financial Engineering: An Equivalence Principle and Dimension
Reduction. Operations Research 59, 1 (2011), 80–95.

[28] Canqun Yang, Feng Wang, Yunfei Du, Juan Chen, Jie Liu, Huizhan
Yi, and Kai Lu. 2010. Adaptive Optimization for Petascale Heteroge-
neous CPU/GPU Computing. In Proceedings of the IEEE International

Conference on Cluster Computing (CLUSTER). 19–28.
[29] Depeng Yang, Gregory D. Peterson, and Husheng Li. 2012. Compressed

sensing and Cholesky decomposition on FPGAs and GPUs. Parallel
Comput. 38, 8 (2012), 421–437.

[30] Yuanhang Yu, Dong Wen, Ying Zhang, Xiaoyang Wang, Wenjie Zhang,
and Xuemin Lin. 2021. Efficient Matrix Factorization on Heteroge-
neous CPU-GPU Systems. In Proceedings of the 37th IEEE International
Conference on Data Engineering (ICDE). 1871–1876.

[31] O. C. Zienkiewicz and R. L. Taylor. 2005. The Finite Element Method
for Solid and Structural Mechanics (6th ed.).

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Overview
	3.2 Operator Fusion
	3.3 Input-Aware Adaptive Tile Size

	4 Result
	4.1 Experimental Setup
	4.2 Performance Improvement
	4.3 Comparison and Analysis of Tile Prediction Performance
	4.4 Ablation Study Analysis
	4.5 In-depth Performance Analysis

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

