
Auto-Healer: Self-Healing Hardware for Perception
Stage Faults in Autonomous Driving Systems

Ali Suvizi
George Washington University
Washington DC, DC, USA

ali.suvizi@gwu.edu

Guru Venkataramani
George Washington University
Washington DC, DC, USA

guruv@gwu.edu

Abstract
Autonomous Driving Systems (ADS) are safety-critical appli-
cations designed to enhance vehicle autonomy and general
road safety. Perception, a critical stage of the pipeline, detects
and classifies objects and environmental conditions. This
stage is also highly susceptible to faults such as transient
and permanent bit flips, which compromise the entire ADS
pipeline. To address such reliability challenges, our paper
proposes Auto-Healer, a novel self-healing hardware archi-
tecture customized for the perception stage to enhance the
reliability and fault tolerance of ADS. We propose a chiplet-
based architecture with an FPGA that performs automated
fault detection in ADS and error correction with negligible
latency (∼ 0.08%) and power overhead of (∼ 0.8𝑊) com-
pared to a system without self-healing support. We leverage
Dual Modular Redundancy (DMR), typically integrated into
many modern ADS systems, for fault management in our de-
sign. Auto-Healer dynamically adapts to faults by efficiently
accelerating image processing for seamless recovery, enabled
by the flexibility and reconfigurability of FPGA technology.
The self-healing system demonstrates low Mean Time to
Repair (MTTR), measured at 40 ns for transient faults and
120 ns for permanent faults, resulting in negligible latency
overheads (less than 0.001%) compared to the system with
no self-healing support.

CCS Concepts
• Hardware→ Reconfigurable logic and FPGAs; Safety
critical systems; • Computer systems organization→
Reliability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1537-2/25/06
https://doi.org/10.1145/3721145.3725755

Keywords
Autonomous Driving Systems, Self-Healing Hardware, Deep
Neural Networks, Field Programmable Gate Arrays
ACM Reference Format:
Ali Suvizi andGuruVenkataramani. 2025. Auto-Healer: Self-Healing
Hardware for Perception Stage Faults in Autonomous Driving Sys-
tems. In 2025 International Conference on Supercomputing (ICS ’25),
June 08–11, 2025, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3721145.3725755

1 Introduction
Autonomous Driving Systems (ADS) (comprising Advanced
Driving Assistance Systems and Automatic Vehicles), consti-
tute a paradigm shift towards making automotive vehicles
safer, alleviating traffic congestion, and unfolding new dimen-
sions for user mobility solutions. Leading industry players
like Google [50], Tesla [58], and NVIDIA [34] have made
huge strides in this domain [3, 36]. The ADAS/AV systems
can respond quicker to dynamic road conditions than hu-
man drivers by utilizing advanced technologies for object
detection, localization, and decision-making, hence improv-
ing their overall safety [63]. Despite many of these huge
benefits, the reliability of such systems remains one of the
most salient issues in the deployment of ADS.
In this work, we focus on improving the reliability of

ADS, especially in their perception stage, which is crucial for
real-time decision-making and is one of the most vulnerable
stages in the ADS pipeline [15]. The perception stage takes
the raw sensor data in the form of images, cameras, LiDAR,
and radar and deduces from this information object detection,
lane detection, road condition analysis, and an understanding
of the driving environment [20]. A single mistake or delay in
this critical step may lead to catastrophic consequences [13];
for example, missing object detections or incorrect obstacle
avoidance decisions may make the complete system unsafe
and nonfunctional [15, 60].

Convolutional neural networks (CNNs) arewidely adopted
at the perception stage for image classification and object
detection. The multi-layer nature of CNNs has shown them
to be subject to transient and permanent faults [15, 57]. Fully
connected (FC) layers are further vulnerable to errors as
these tend to aggregate information from all previous layers.

https://orcid.org/0000-0002-9338-6082
https://orcid.org/0000-0002-7084-7560
https://doi.org/10.1145/3721145.3725755
https://doi.org/10.1145/3721145.3725755

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Ali Suvizi and Guru Venkataramani

In the latter layers, defects can directly affect the output,
causing misclassification that is particularly dangerous to
safety-critical ADS tasks [21, 39]. This situation is further ex-
acerbated by permanent faults [23, 47], for instance, stuck-at
faults owing to time-dependent dielectric breakdown (TDDB)
and electromigration, among other aging mechanisms.
Traditional fault tolerance mechanisms, like Triple Mod-

ular Redundancy (TMR) and Error Correcting Code (ECC),
have significant deficiencies in meeting the timing demands
of ADS. TMR masks the faults by redundancy but does not
correct errors; it has no end-to-end fault management, hence
making the system susceptible to persistent or cascading
failures [49]. ECC works well for transient faults but faces
difficulties with fault scenarios that are more complex and
with a wider failure spectrum. Also, both of the approaches
have significant latency, energy overheads, and costs [29, 58],
which contradicts the real-time processing, energy efficiency,
and cost-effectiveness required by ADS pipelines [66].

To tackle the above challenges, we introduce Auto-Healer,
a novel chiplet-based self-healing hardware architecture tai-
lored to address the vulnerabilities of the perception stage
in the ADS pipeline, particularly in image processing and
object detection. The proposed mechanism ensures robust
CNN operations with minimal performance overheads, even
under stringent real-time constraints, by autonomously de-
tecting, diagnosing, and recovering from faults. Leveraging
FPGA-based technology, our proposed architecture combines
high performance, scalability, and adaptability, meeting ADS
systems’ reliability and fault-tolerance demands. Through
our proposed design, we aim to significantly enhance the
safety and dependability of autonomous driving technolo-
gies while ensuring minimal overhead on latency and energy
consumption. This enables ADS to perform rapid decision-
making, ensuring timely responses before critical deadlines,
thus paving the way for resilient and efficient automotive
systems in the future.

In summary, the key contributions of our paper are:

• We propose Auto-Healer, a novel self-healing ar-
chitecture to address the perception-stage bit faults
within the ADS pipeline that does image processing
and object detection. To the best of our knowledge, this
is the first self-healing mechanism in the ADS domain
that seeks to integrate autonomous fault detection, di-
agnosis, and self-healing to provide robustness and
reliability for critical real-time ADS operations.
• We design Auto-Healer using FPGAs that combine
three key benefits: high performance through hard-
ware acceleration, energy efficiency achieved by low
resource usage, and adaptability to faults and changing
conditions (supporting reconfigurability for dynamic
fault recovery).

• We explore the benefits of active-passive fault man-
agement with DMR for improved fault detection
and recovery. Our architecture employs lightweight
synchronization points, which trigger the self-healing
mechanism only in cases of disagreement between
the two modules, thus allowing for improved energy
efficiency and operational effectiveness.
• Our experimental evaluation demonstratesminimal
performance overheads for the self-healing mech-
anism, with a latency increase of only 40 ns for tran-
sient faults and 120 ns for permanent faults compared
to a baseline with no healing functions. The system
achieves a total execution time of 0.95ms for the CNN
without self-healing and just 92 nsmorewith self-healing,
ensuring minimal disruption. The exceptionally low
Mean Time to Repair (MTTR) of 40 ns for transient
faults and 120 ns for permanent faults further high-
lights the system’s reliability and timeliness. These
results demonstrate robust performance and timely
decision-making, satisfying the stringent requirements
of ADS applications.

This paper is structured as follows: Section 2 provides
background on autonomous driving, ADS safety standards,
and self-healing mechanisms. Section 3 outlines the threat
model, highlighting perception-stage vulnerabilities to bit
flip faults. Section 4 discusses the limitations of the current
design. Section 5 details the self-healing architecture and
FPGA features. Section 6 describes the implementation. Sec-
tion 7 presents experimental results on MTTR, latency, and
power consumption. Section 8 reviews related fault toler-
ance work and Section 9 concludes with insights and future
directions.

2 Background
2.1 Autonomous Driving
To facilitate the advancement of AVs, the National Highway
Traffic Safety Administration (NHTSA) established guide-
lines referencing the six levels of automation defined by the
Society of Automotive Engineers (SAE) International [48, 64].
These levels range from No Automation (Level 0), where the
driver retains complete control, to Full Automation (Level
5), where the automated system assumes full driving respon-
sibility under all conditions.
The functions assigned to an actual autonomous vehicle,

that is, ADAS or ADS, are primarily divided into a pipeline
processing system comprising three primary tiers as shown
by [37]: Perception, Planning, and Control. The perception
module processes input from sensors such as cameras, Li-
DAR, GPS, IMU, and radar by executing key tasks, including
localization, object classification, object detection, and object

Auto-Healer: Self-Healing Hardware for Perception Stage Faults in Autonomous Driving Systems ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 1: Comparison of Automation Levels, Platforms,
and Sensors Across Leading Manufacturers

Manufacturer Mobileye[38] Tesla[58] Audi[4, 34] Waymo[50]
Automation Level 2 Level 2 Level 3 Level 4
Platform SoCs SoCs SoCs SoCs
Platform

Description
SuperVision

System
Full

Self-Driving
AI-Based
Platform

Waymo
Proprietary Suite

Sensor Camera Camera, Radar Lidar, Camera,
Radar

Lidar, Camera,
Radar

tracking, allowing the vehicle to gain a detailed understand-
ing of its immediate environment. Mission planning resolves
the definition of the best path the vehicle will decide from
the current position by using some algorithms like A* [22].
The vehicle’s motion is calculated through motion planning,
and the steering, acceleration, and braking are governed by
dynamic movement primitives [32]. A control module will
execute the trajectory from the motion planning module and
translate it to low-level commands for actuators with great
accuracy. Using techniques such as PID controllers [62] or
Model Predictive Control (MPC) [51], the controller ensures
proper steering, acceleration, and braking and continuously
adjusts itself to maintain the safety and stability of the vehi-
cle while operating. A detailed diagram of ADS components
is presented in Figure 1.

2.2 ADS Functional Safety Standards
In the automotive industry, the functional safety require-
ments are categorized into Automotive Safety Integrity Lev-
els (ASILs) ranging from ASIL-A to ASIL-D, with ASIL-D
representing the highest safety risk [18]. Higher ASIL levels,
especially ASIL-D, demand aggressive safety features, includ-
ing sophisticated error detection and recovery mechanisms
such as lockstep execution, which are essential for ASIL-D
micro-controller units (MCUs).

ISO26262 enforces independent redundancy at higher lev-
els of ASIL to control the occurrence of common-cause fail-
ures. Staggered DMR, in which one core runs a fixed execu-
tion cycle behind the other core so as to enable the detection
of identical errors [61], is widely used in automotive systems.
Redundancy can be applied at several levels depending on
the Sphere of Replication (SoR), which impacts both system
cost and fault detection latency [46].

2.3 Self-Healing
Self-healing systems represent a paradigm shift in design-
ing fault-tolerant and resilient architectures, particularly for
safety-critical applications like ADS. These systems are en-
gineered to autonomously detect, diagnose, and repair faults
during runtime to ensure system availability, reliability, and
safety. This capability is particularly vital in ADS, where

faults in perception or decision-making can result in cata-
strophic consequences.

2.3.1 Definition and Key Components. A self-healing system
is built upon an adaptive feedback loop often modeled after
the Observe-Orient-Decide-Act (OODA) framework [7]. This
loop integrates several interdependent components. Fault
detection mechanisms monitor the system for anomalies,
such as transient and permanent bit flips, synchronization
errors, or performance degradation. Once anomalies are iden-
tified, fault diagnosis processes isolate and identify their root
causes, whether they arise from hardware malfunctions or
computational software errors. Recovery mechanisms then
implement corrective actions, such as checkpointing, roll-
back, or input filtering, to ensure system continuity. Finally,
testing and adaptation mechanisms validate recovery mea-
sures and dynamically adjust to evolving fault conditions
using runtime monitoring (Fig. 2).

2.3.2 Need for Self-Healing Architectures in ADS. ADS are
integral to modern vehicles, enhancing safety and driving
comfort through features such as adaptive cruise control,
lane-keeping assistance, and emergency braking systems.
These systems rely heavily on CNNs for tasks such as object
detection and image classification, which are computation-
ally intensive and susceptible to transient and permanent
errors like bit flips [24, 28]. Such errors can easily propagate
through the network layers, leading to large inaccuracies
compromising safety-critical decisions [12, 67].

Functional safety standards, such as ISO 26262 and ASIL-D,
require stringent fault tolerance for the highest benchmarks
of safety and reliability. Self-healing systems are vital for
safer and more reliable autonomous driving technologies, as
they address vulnerabilities inherent in CNN-based percep-
tion tasks and operate under real-time constraints [2, 16, 17].

3 Threat Model
3.1 Faults in ADS Pipeline Stages
The perception stage is one of the most sensitive in the ADS
pipeline chain, as it receives a large volume of raw sensor
data for object detection and classification and is highly
vulnerable to faults due to the dynamic environment of au-
tonomous driving [14, 35]. Table 2 provides the frequency of
bugs in various ADS components, where perception-related
tasks and object detection represent a significant popula-
tion. The data extracted from Apollo [5] and Autoware [59]
benchmarks in [15] reveals that object detection accounts
for a large fraction of bugs-55 instances, making it one of
the most fault-prone sub-components in the ADS pipeline.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Ali Suvizi and Guru Venkataramani

Perception Data Fusion

Object Classifier

Object Tracker Object Localizer

Planning Control

Path Planning Motion Planning

Accelerate
Steering

Object Detector

Input Image

Figure 1: An illustration of the Autonomous Driving Systems Pipeline

Self-Monitor Self-Diagnosis

Self-AdaptationSelf-Testing

Fault Occurance

Fault
Identification

Fault Remediation

Figure 2: Self-Healing Loop Architecture

Table 2: Frequency of bug occurrences for each AV
component, highlighting the vulnerability of percep-
tion tasks, including detection and localization, in ADS
pipelines.

Component Sub-Component Apollo Autoware Total

Perception

Object Detection 17 38 55
Object Tracking 2 9 11
Data Fusion 11 6 17
Multi-Sensor Fusion 9 21 30
Lidar Locator 1 26 27

Planning
Path Planning (Map) 13 5 18
Trajectory Prediction 7 1 8

Control Control 4 0 4

3.2 Fault Types
The perception stage is inherently vulnerable to faults due to
its reliance on CNNs for image classification, object detection,
and environmental mapping tasks. Two primary types of
faults significantly impact this stage [24]:

Transient Faults: Transient faults, such as bit flips [8, 42],
usually arise from environmental factors such as cosmic
radiation, electromagnetic interference, and thermal fluc-
tuations [45]. These faults can easily propagate over the

network, scaling up inaccuracies and undermining safety-
critical decisions, such as failing to detect an obstacle or
misclassifying road conditions [27]. Transient faults mani-
fest in various forms. Due to environmental disturbances,
single-bit upsets involve the inversion of a single memory
or register bit. In contrast, multiple-bit upsets occur when
several bits are simultaneously flipped, increasing the com-
plexity of error correction.
Permanent Faults: Permanent faults, including stuck-

at faults and permanent bit flips [1, 8], generally arise due
to hardware aging mechanisms like time-dependent dielec-
tric breakdown (TDDB) and electromigration. These faults
cause permanent malfunctions in components like multi-
pliers and accumulators, as well as persistent corruption
of stored data, degrading the system’s overall performance
over time [14, 23]. Such faults badly affect real-time decision-
making in the perception stage because faulty hardware
and corrupted data may lead to persistent errors in com-
putations, further compromising the integrity of the ADS
pipeline [28, 42]. One example of permanent faults includes
single hard errors, which result in logic states being stuck
at zero or one, leading to persistent failures in memory or
registers [11, 45]. A detailed categorization of fault types can
also be found in Figure 3.

ADS Failure

Permanent Fault Transient Fault

Single Bit Upset Multiple Bit Upset

Single Event Upset

Stuck-at Zero Stuck-at One

Figure 3: Fault types considered by our work

Auto-Healer: Self-Healing Hardware for Perception Stage Faults in Autonomous Driving Systems ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

4 Limitations of Current Designs
Modern ADS increasingly rely on computationally intensive
tasks such as object detection and classification, which de-
mand high levels of reliability and real-time performance.
However, these systems are bound to significant challenges
that compromise their operational efficiencies and safety:
(1) stringent latency requirements make every slightest de-
lay unacceptable [19, 36]; (2) transient/permanent faults in
computational units may cause catastrophic failures [1, 24];
and (3) legacy fault-tolerance mechanisms are frequently
costly [58] and introduce and overheads that violate with
the real-time constraints of the ADS pipelines [2].
Conventional TMR and ECC solutions have well-known

limitations in satisfying strict ADS requirements. TMR pri-
marily masks the faults by redundancy but does not include
error correction or end-to-end fault management capabili-
ties, thereby exposing the systems to persistent or cascading
failures [49]. Similarly, ECC works well for transient faults
like one or two bit flips but fails to handle multi-bit error
scenarios. Both of the methods incur high latency, energy
overheads, and costs [10, 58].
Given such challenges, we propose a chiplet-based self-

healing architecture in an ADS system involving FPGAs. The
proposed architecture of automated fault detection, diagno-
sis, and correction will leverage the flexibility and reconfig-
urability of FPGAs with an assurance of high reliability in
fault-inducing scenarios.

5 Design Overview of Auto-Healer
5.1 Key Features
The Auto-Healer self-healing architecture integrates fault
tolerance and real-time processing capabilities specifically
tailored for ADS. Its key features include:
• Focus on MAC Operations: Prioritizes fault detec-
tion and correction for Multiply-Accumulate (MAC)
operations, making it applicable to any computational
system heavily relying on MAC operations.
• Generic and Flexible Design: Incorporates dynamic
synchronization point configurations, enabling adjustable
fault comparison frequency and checkpoint counts.
Supports fault tolerance across all ADS pipeline stages.
• Dual-Level Parallelism: Leverages parallelismwithin
and across CNN layers, reducing latency and enhanc-
ing efficiency while ensuring real-time processing.
• Resource Efficiency and Scalability: Stores weights
and biases in BRAM to minimize DSP, LUT, and FF
usage. Allows deployment of up to four CNN instances
on a single FPGA, with two active and two passive
modules ensuring fault tolerance.
• Advantages Over TMR and ECC/CRC: Unlike TMR,
which incurs significant power and latency overhead

by running all three modules simultaneously and only
masks faults through majority voting, Auto-Healer de-
tects, corrects, and resolves faults efficiently. It dy-
namically isolates and repairs permanent faults while
ensuring minimal operational overhead. In contrast
to ECC and CRC, Auto-Healer avoids complex encod-
ing/decoding logic, providing direct and efficient cor-
rection for both data and logic faults, ensuring long-
term system reliability.
• Checkpointing for Fault Recovery: Stores check-
points in LUTRAM for fast recovery and efficient fault
resolution, ensuring minimal disruption to ADS op-
erations under stringent latency and availability con-
straints.

5.2 Criteria for Self-Healing System Design
In designing self-healing architectures for ADS, much em-
phasis is placed on continuous availability and survivability
under fault-inducing scenarios. As illustrated in Fig. 4, these
systems automatically detect and diagnose faults, recover,
and isolate them using reconfiguration and synchroniza-
tion techniques that enhance fault tolerance with minimal
disruption. This automated fault management assures real-
time adaptability and reliability; hence, it is indispensable in
safety-critical applications like ADS.

Objectives

Self-Healing

Features

 Availability

Reliability

Detecting

Diagnosing

Recovering

Isolating

Reconfiguration

Synchronization

Figure 4: Self-Healing Properties

5.3 Auto-Healer Modules
Our proposed self-healing architecture, as shown in Fig. 5, in-
tegrates self-fault detection, self-diagnosis, and self-correction
mechanisms into a unified framework, leveraging FPGA-
based flexibility and reconfigurability. The architecture is
designed to address both transient and permanent faults
while ensuring minimal disruption to ADS operations. Be-
low, we describe its key components and functionality.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Ali Suvizi and Guru Venkataramani

[Y]

[X]Checkpoints Memory

 Checkpoint 1

Weights
Memory

Triggerer Self-Healer
Triggering

Self-Healer

 Checkpoint 2

 Checkpoint 3

 Checkpoint N

Rescue Point Selector

Fault Controller Table

Fault Controller

Active App 1

[X]

R.P

Synchronization Point

= =Reg 1

R.P R.P

F.D F.D F.D

Reg 2

Reg 1
(Tn-1)

Reg 2
(Tn-1)

[Y]Weights
Memory

Active App 2

[Y]Weights
Memory

Passive App 1

[Y]Weights
Memory

Passive App 2

Continue
Excution

Pass_Flag==1

[Y1]

[Y2]

[Yp1]

[Yp2]

1

2

3

2

4

45

7

Pass_Flag==0

6

Figure 5: Self-Healing Architecture

5.3.1 Active-Passive Module Design. The architecture is
centered around the active-passive module pair using DMR
1 . An equivalent passive module can replicate every compu-
tation performed by an active module. At any given time, the
active modules share the same processing unit for CNN com-
putations and take in the same input image. Local weights
and biases are used for the computations, which are stored
within each processing unit. Each of these pairs executes
the image processing job concurrently, sending results to
the synchronization point for checking. The results are sent
at every MAC operation to this synchronization point to
have a fine granular level of fault detection in this design 2 .
During normal execution, checkpoints are saved simultane-
ously as data is sent to the synchronization point 2 . If DMR
module outputs do not match, the most recent checkpoint is
discarded as it is considered faulty, and the last stable check-
point is retained. The passive modules add redundancy for
robust fault tolerance, increasing system reliability consider-
ably, while the whole process of fault detection, triggering,
and fallback to passive modules is done autonomously.

5.3.2 Synchronization Point. Synchronization point 2
is crucial for comparing active modules’ outputs. This is the

point at which the system will either act in a fault-free state
or there is some discrepancy. The synchronization point
stores interim values that might be useful for diagnosing
faults in case of recovery, achieved through adding tempo-
rary registers. When there is a match in outputs, the sys-
tem will work fine and smoothly, considering the last saved
checkpoint as an indicator 4 . In contrast, this same synchro-
nization point would invoke the fault detection mechanism
if something is wrong 4 . Due to the generic and adaptive
nature of their design, the frequency of comparisons may be
adjusted dynamically. This flexibility ensures that synchro-
nization point monitor the system effectively while main-
taining operational integrity.

5.3.3 Fault Detection Mechanism. The fault detection
mechanism 5 classifies discrepancies as transient or perma-
nent faults and their nature. Triggered by a synchronization
point 4 , fault detectors (F.D) assigned to different parts of
the system, for example, CNN layers or specific computa-
tional stages, initiate the re-execution of the computational
step from the last stable checkpoint 6 , 7 . This re-execution
helps to classify the fault into transient-for example, bit
flips due to external interference-or permanent-for instance,

Auto-Healer: Self-Healing Hardware for Perception Stage Faults in Autonomous Driving Systems ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

stuck-at faults. Transient faults are cleared after the first
re-execution and are verified by synchronized outputs. If the
discrepancy remains, then detectors identify the type and
location of the fault, using checkpoint data to determine the
exact application, CNN layer, and position of the computed
data responsible for the fault. It is fully automated, meaning
fault diagnosis will be timely and accurate without human
intervention.

5.3.4 Fault Controller and Rescue Points. A fault con-
troller co-operates with the rescue points (R.P) in order to
carry out the process of fault recovery 5 . In case of confirma-
tion of permanent fault, the fault controller would investigate
the application, CNN layer, and the position of occurrence
using knowledge from detectors and checkpoints 6 . This
information is kept in the fault controller table (F.C.T) for
future reference. In case of a transient fault, the fault con-
troller enables simple re-execution through rescue points,
where the problem does not cause the firing of the passive
modules. In case of a permanent fault, the fault controller
isolates the faulty application and switches on the passive
module with the last stable checkpoint to keep the system
running 7 . Then, the self-healing mechanism identifies the
faulty application(s) with the help of information from the
synchronization point 2 by comparing the result of new ac-
tive applications with the old ones and selects the best rescue
point for its recovery based on the fault type and its location.
The faulty application gets updated with the corrected data
and now turns into the new passive module. Thus, all these
processes happen automatically for a high degree of system
reliability with minimal disturbance to the operations.

5.3.5 Fault Recovery and Checkpointing. Fault recov-
ery leverages rescue points to replay computation steps for
recovering faulty data. The checkpointing mechanism stores
full snapshots of system states that capture critical oper-
ational information, including the type of operation (mul-
tiplication or addition), CNN layer number, data location
within matrices, and the result values of addition and mul-
tiplication operations 3 . These checkpoints are recorded
after the synchronization point verifies that no discrepancy
exists. If the comparison at the synchronization point re-
veals no mismatch, the system state is saved as a checkpoint
for potential future recovery 2 by comparing the result
of new active applications with the old. The checkpointing
system is implemented in hardware, specifically designed
for FPGA. To optimize performance, storage is allocated to
LUTRAM instead of BRAM. This choice leverages the faster
read/write capabilities of LUTRAM and its abundance on
FPGA platforms compared to the relatively limited avail-
ability of BRAM. Additionally, checkpoints are managed
using a First-In-First-Out (FIFO) strategy to optimise mem-
ory usage, maintaining only the last three snapshots. This

generic design allows the system to adjust the number of
stored checkpoints as needed, but for the current application,
three checkpoints suffice to address transient bit flips and
stuck-at faults. In a fault-free scenario, the system efficiently
processes data without the need to access the checkpoints,
ensuring minimal latency. When faults occur, the most re-
cent checkpoint is discarded, and the remaining two are used
to recover faulty computations. This approach not only saves
memory and reduces latency but also ensures the highest
level of reliability under all conditions, meeting stringent
ADS requirements for execution time and availability, even
during fault recovery.
When a fault occurs, the last stable checkpoint contains

the output of the last correctly executed MAC operation.
This output serves as the input for the MAC operation where
the fault occurred. The fault controller determines the opti-
mal R.P based on the fault’s location and type. The selected
R.P retrieves the necessary data 6 and supplies it to the
application, enabling seamless re-execution of the faulty op-
eration 7 . During recovery, transient faults can be resolved
by re-executing the operation using the last stable check-
point. For permanent faults, the system isolates the faulty
module, activates a passive module, and continues execution
while correcting the faulty application using rescue points.
The structured workflow of the self-healing architecture for
ADS perception, detailing all stages from automatic fault
detection to automatic recovery, is elaborated step-by-step
in Algorithm 1.

5.3.6 Future Directions and Knowledge Building. The
architecture incorporates a fault controller table to build a
fault knowledge base. The system can swiftly address recur-
ring faults by storing detailed fault information and correc-
tive actions. For new faults, error virtualization maps the
fault to similar known issues for efficient recovery. Check-
point memory facilitates advanced recovery scenarios, al-
lowing the use of older checkpoints to correct or re-execute
faulty operations. This automation ensures the system con-
tinuously learns and improves, paving the way for future
fault prediction and resolution advancements.

6 Implementation
To validate the efficiency and dependability of the proposed
self-healing architecture, we implemented the entire system
on an FPGA platform. This implementation integrates CNN-
based image processing as the main application and the self-
healing architecture, as described in Fig. 5 and Algorithm 1.
This implementation illustrates not only the acceleration
and energy efficiency introduced by the FPGA hardware
accelerators but also the improved system reliability and
availability provided by the self-healing mechanisms.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Ali Suvizi and Guru Venkataramani

Algorithm 1 Self-Healing Architecture for ADS Perception
I : Input image
W[l], B[l]: Weights and biases for CNN layer 𝑙
M, N, P: Matrix indices in each layer 𝑙
SyncPoint: Synchronization point for comparison
C[l]: Checkpoints for fault recovery
F.D: Fault Detector for fault detection/diagnosis
F.C.T: Fault Controller Table for fault tracking
R.P: Rescue Point for fault correcting

1: Receive correctly formatted input data 𝐼
2: Load CNN parameters𝑊 [𝑙], 𝐵 [𝑙] into Applications
3: while system is running do
4: for each CNN layer 𝑙 do
5: for each matrix element (𝑀, 𝑁) do
6: 𝑌1(Tn) [𝑀, 𝑁] = ∑

𝑃𝑊 [𝑙] [𝑀, 𝑃] · 𝐼 [𝑙] [𝑃, 𝑁]
7: 𝑌2(Tn) [𝑀, 𝑁] = ∑

𝑃𝑊 [𝑙] [𝑀, 𝑃] · 𝐼 [𝑙] [𝑃, 𝑁]
8: Send 𝑌1(Tn) and 𝑌2(Tn) to SyncPoint
9: end for
10: Save checkpoints for active applications in (Tn)
11: Save Outputs in temp registers 𝑌1(Tn-1), 𝑌2(Tn-1)
12: if 𝑌1(Tn) = 𝑌2(Tn) then
13: Continue normal execution
14: else
15: comment: Self-Healer functionality
16: Trigger Self-Healer system
17: Delete current checkpoint, including faulty data
18: Selecting the best R.P for re-execution by Fault con-

troller
19: Re-execute 𝑌1 and 𝑌2 using 𝐶 [𝑙]last
20: if 𝑌1(Tn) = 𝑌2(Tn) then
21: Classify fault as transient
22: Resume normal execution
23: F.C.T← Update(𝐹𝑎𝑢𝑙𝑡𝑡𝑦𝑝𝑒,𝑀, 𝑁, 𝑃, 𝑙)
24: else
25: Classify fault as permanent
26: Delete 𝐶 [𝑙]last
27: Selecting best R.P for correction
28: Activate Passive Applications using 𝐶 [𝑙]last
29: Compare 𝑌𝑝1, 𝑌𝑝2 with data from temp regis-

ters 𝑌1(Tn-1), 𝑌2(Tn-1)
30: (𝑀, 𝑁, 𝑃, 𝑙) ← F.D(𝐶 [𝑙],𝑊 [𝑙], 𝐵 [𝑙])
31: FCT← Update(𝐹𝑎𝑢𝑙𝑡𝑡𝑦𝑝𝑒,𝑀, 𝑁, 𝑃, 𝑙)
32: Retrieve and Correct Faulty data:

𝑊 [𝑙] [𝑀, 𝑁] ←𝑊Passive [𝑀, 𝑁], 𝐵 [𝑙] [𝑃] ← 𝐵Passive [𝑃]
F.C.T update: Fault[𝑀, 𝑁, 𝑃] → Resolved

33: end if
34: end if
35: end for
36: Periodically discard old checkpoints (FIFO strategy)
37: end while

6.0.1 System Implementation. The CNN model was imple-
mented on an FPGA using VHDL at the Register-transfer
level (RTL) to leverage the FPGA’s inherent parallelism for
real-time processing. The model used is LeNet-5, chosen
for its simplicity and efficiency, making it well-suited for
integration with the self-healing system. LeNet-5 consists of
eight layers, including two convolutional layers, two pooling
layers, one flattening layer, and three fully connected layers.
These layers are structured to perform feature extraction and
classification tasks on image data. To meet ADS’s real-time
requirements, our CNN implementation leverages the inher-
ent parallelism of FPGA hardware, offering flexibility for full
parallelism or pipelined execution to balance resource utiliza-
tion and performance. Unlike conventional approaches that
rely on off-chip memory or hard-coded parameters (which
significantly increase latency and resource usage), we opti-
mized the design by storing weights and biases in BRAM,
minimizing DSP, LUT, and FF usage while ensuring efficient
on-chip data access. The CNN operates in a pipelinedmanner,
achieving parallelism within layers for filter computations
and across layers for seamless data propagation. For exam-
ple, during the second iteration of computation, comparison
and checkpointing for the first iteration occur simultane-
ously, reducing the latency overhead of self-healing. Our
Auto-Healer supports this resource-efficient design, enabling
the deployment of four CNN instances on a single FPGA.
By storing parameters in BRAM to reduce DSP, LUT, and
FF usage, the design allows two active modules to work in
a DMR configuration, with two passive modules available
for fault-tolerant operations. This scalable and fault-tolerant
implementation is well-suited for high-performance ADS
tasks.

Additionally,Auto-Healer including synchronization points,
fault detectors (F.D), fault controller table (F.C.T), rescue
points (R.P), and checkpointing mechanisms, was imple-
mented on the FPGA. These components were connected
to the CNN layers to maintain fault tolerance and ensure
system reliability. The FPGA processed input images sequen-
tially, assuming no faults were found in the input data. The
weights and biases for computations were pre-loaded into
the local memory of each CNN instance. The system was im-
plemented with four CNN instances: two active modules and
two passive modules under normal operation. During execu-
tion, the active modules performed inference tasks, and after
each MAC operation, the synchronization point checked the
pass_flag to determine its status (1 or 0). A pass_flag of 1
indicated no faults, allowing the system to proceed seam-
lessly. If the pass_flag was 0, the self-healing mechanism was
triggered to locate and correct the fault automatically.

6.0.2 Fault Injection and Scenarios. Runtime fault injection
was performed during testbench simulations to evaluate the

Auto-Healer: Self-Healing Hardware for Perception Stage Faults in Autonomous Driving Systems ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

system’s fault tolerance. These included transient faults such
as bit flips (SEU) and computational errors (e.g., malfunc-
tioning multipliers or adders), as well as permanent faults
such as stuck-at faults. Faults were injected into CNN layers’
weights, biases, and operations, including convolutional and
FC layers. The following scenarios were evaluated:

- Single fault in a single layer: Transient faults in this sce-
nario could arise from computational errors in operators or
single or multiple bit-flips in the local memory of a specific
active CNN layer during computation. In this case, perma-
nent faults were related either to operators, which could
only be masked by switching to the passive application, or
permanent bit flips in the local BRAM of an active CNN,
which were corrected by the self-healing mechanism.

- Multiple faults in a single layer: Multiple transient faults,
such as bit flips in local memory or computational errors in
operators within a single CNN layer, were introduced to test
the system’s ability to resolve complex fault scenarios within
a layer. Similarly, multiple permanent bit flips in the local
BRAM were injected, requiring the self-healing mechanism
to isolate and correct the faults while maintaining system
availability.
- Sequential faults across multiple layers: Faults were in-

jected sequentially across different CNN layers to simulate
scenarios where faults appear progressively during the sys-
tem’s runtime. These faults included both transient faults and
permanent faults. The self-healing mechanism detected and
resolved each fault autonomously, ensuring uninterrupted
system operations.

6.0.3 Fault Detection and Correction. In our system, the
F.Ds identify whether a fault is transient or permanent using
a counter. When a mismatch is first detected at the syn-
chronization point, the counter is set to 0. The F.D then
requests the fault controller to select the best R.P for simple
re-execution using the last stable checkpoint, incrementing
the counter to 1. If equality is restored during re-execution,
the fault is classified as transient (e.g., a bit flip or a transient
fault in the logic unit), and the re-execution successfully
corrects the fault. If the same mismatch persists, the F.D
identifies the fault as permanent (e.g., a stuck-at fault in
BRAM or a permanent logic unit failure). In such cases, the
F.D records the fault information in the F.C.T, requests the
fault controller to isolate faulty applications, and selects the
best R.P to activate the passive nodes and re-execute the op-
eration using the last stable checkpoint. For stuck-at faults,
while the activated passive applications are running, their
output is used to identify the faulty data in BRAM, which
is then replaced with the correct data from the new active
nodes. The F.C.T is updated to reflect the resolved fault status.
If the fault is permanent in the logic unit (not a stuck-at-fault

in BRAM), the system also generates an alert for the ADS
controller to schedule physical maintenance.

Our Auto-Healer system provides distinct advantages over
TMR. While TMR involves all three redundant modules to
be running simultaneously at all times, thereby incurring
significant latency and power overhead because of continu-
ous invocation. In contrast, Auto-Healer activates only two
modules simultaneously, keeping the other two passive and
invokes them only when permanent faults are encountered,
such as stuck-at faults or mask logic unit failures. Further-
more, Auto-Healer alerts the ADS system to address physical
faults, ensuring long-term reliability. This approach balances
resource efficiency and fault management while meeting the
stringent real-time requirements of ADS applications.

7 Experimental Results
7.1 Experimental Setup
We conduct experiments to assess the effectiveness of our
Auto-Healer architecture using a Xilinx Virtex® UltraScale™
FPGA platform that integrates CNN-based perception tasks
and fault management for latency, power consumption, re-
source utilization analysis, and reliability.

• Convolutional Neural Network: The LeNet-5 model
was adopted to handle image processing due to its
simplicity, which allows for efficiency in integration
with the self-healing system, besides allowing room
for any higher-level complexity of models that may
be necessary in the future. LeNet-5, containing con-
volutional, pooling, and fully connected layers, can
effectively show both inference acceleration and fault
tolerance of the system. Pre-training of the model on
the CIFAR-10 dataset had been done to prepare the
parameters for inference. At first, post-training quanti-
zation was used to make optimum weights and biases,
which reduced the overall FPGA resource usage. The
described model was implemented at RTL using VHDL
language, and pipeline architecture was used at every
stage to minimize the latency and increase the through-
put. This scalable hardware design ensures that ADS
tasks can maintain real-time on-chip processing even
when scaled to more complex datasets, such as COCO
and KITTI, for training and inference.

• Dataset: The CIFAR-10 dataset has been used for eval-
uating the self-healing system. CIFAR-10, with 60,000
images of resolution 32x32 pixels distributed across 10
classes [33], provides a more complex benchmark for
evaluating the system performance. This dataset was
selected to demonstrate the architecture’s flexibility in
handling a range of visual inputs.

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Ali Suvizi and Guru Venkataramani

• Experimentation Platform: The proposed archi-
tecture is implemented on the XCVU440-FLGA2892-
2-i of the Virtex® UltraScale™ family. It is a high-
performance FPGA platformwithmany computational
resources, such as logic elements, DSP slices, and BRAM.
The implemented system consumed less than 2% of
the total available resources of the FPGA. Hence, most
resources can be spared for other ADS pipeline stages
like planning and control.

7.2 Experimental Results and Analysis
This section discusses the experimental results that are nec-
essary to validate the efficiency of the proposed self-healing
architecture, with negligible overheads towards system la-
tency and power consumption, for increased reliability. All
of the evaluations performed in this study were centered
around image processing workloads pertaining to the Per-
ception stage of the ADS pipeline, executed on the FPGA
platform. The demonstration of CNN-based image process-
ing integrated with the self-healing mechanisms shows the
system’s capabilities to reduce latency and power consump-
tion while keeping very high reliability, which is crucial in
many safety-critical applications.

7.2.1 Reliability, Latency, and Power Efficiency. These
results are indicative of the dual advantages that the pro-
posed architecture brings about: a reduction in latency and
power consumption for CNN inference tasks while it en-
sures a considerable improvement in system reliability due
to self-healing mechanisms. Due to intrinsic parallelism in
the FPGA, CNN operations such as convolution and pool-
ing can be efficiently executed with low latency and high
throughput. Meanwhile, the self-healing components guaran-
tee fault detection, isolation, and correction to be performed
automatically without disrupting system operation.

Latency andPower Constraints inADSPipeline. While
in most ADSes, the dominant sources for system latency
and power consumption stem from perception, especially
from image processing, DNN-based computations represent
a majority of this workload. For instance, detection tasks
(DET) on CPUs exhibit a mean latency of 7150 ms, whereas
FPGAs reduce this to just 11.2 ms [36], demonstrating the
efficiency gains achievable with FPGA implementations [55].
Also, the perception latency shall remain below 50 ms [3, 36],
which is only a fraction of the required deadline for ADS
decision-making [3]. We note that using FPGAs significantly
reduced both power consumption and processing latency
during inference operations using DNN benchmarks com-
pared to other processors like CPU/GPU implementation.
This improvement stems from the FPGA’s ability to execute

tasks in parallel and store model parameters on-chip, reduc-
ing data transfer overheads and achieving greater efficiency
compared to general-purpose processors. These enabled the
system to process more frames per second (FPS), which in
turn increased object detection and classification accuracy,
and other advanced perception capabilities such as traffic
light detection and lane identification that are needed for
higher ADS levels [37].

FPGAAcceleration and System Advantages. The FPGA
implementation of CNN showcased remarkable latency re-
ductions, enabling sub-50 ms latency for image processing
tasks [52]. Moreover, the energy efficiency of FPGAs, with
power consumption significantly lower than GPUs, aligns
with the stringent power budgets of embedded ADS plat-
forms, typically ranging from 10–30 W [36, 54]. This power
efficiency facilitates the integration of additional DNN com-
putations into the perception stagewithout exceeding energy
constraints, supporting the scalability required for higher
ADS levels [37].

Initially, the baseline performance of the CNN inference
on the FPGA was measured respecting image processing; to
set the baseline, the metrics, latency, and power consumption
were measured in fault-free conditions. Then, we injected
faults at runtime to measure the system’s fault tolerance.
Synchronization points, F.D, F.C.T, R.P, and checkpointing
have been analyzed as self-healing mechanisms respecting
their impact on system reliability and overhead. From Ta-
ble 3, it is evident that latency comparisons represent very
favorable evidence for FPGA acceleration compared to using
a CPU for ADS perception tasks.

Table 3: Comparison of Latency and Power Consump-
tion for CNN Inference on CPU and FPGA

Model Scenario Latency (ms) Speed-up

LeNet-CPU No-Fault 43.48 -
LeNet-FPGA No-Fault 0.95 45

Self-Healing Overhead Analysis. Our experimental re-
sults showed that the self-healing system maintained real-
time performance with negligible overhead relative to the
benefits of improved reliability. Fault injection tests, includ-
ing transient and permanent faults, demonstrated that the
self-healing system was able to correct the errors, maintain-
ing system availability in all scenarios. Table 4, 5 demonstrate
the latency and power consumption of the whole system and
its overhead compared to a CNN implementation without
the self-healing mechanism.
As shown in Table 4, the results from our experiments

highlight the minimal latency overhead of the self-healing

Auto-Healer: Self-Healing Hardware for Perception Stage Faults in Autonomous Driving Systems ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 4: Latency Comparison for CNN Inference on
FPGA Augmented with Self-Healer for Transient and
Permanent Fault Types, IncludingOverheadCompared
to a Fault-Free CNN on FPGAWithout Fault Tolerance

Scenario Fault Type Latency (ms) Overhead (%)
No Fault None 0.95080 -

Auto-Healer Transient 0.95084 0.0042
Auto-Healer Permanent 0.95092 0.0126

mechanism, particularly in scenarios involving transient and
permanent faults. The measured overhead is well within ac-
ceptable limits for ADS applications and remains below the
threshold value typically required for real-time processing
in ADS pipelines. This ensures reliable performance with-
out compromising system efficiency or the stringent timing
constraints critical to ADS operations.

Table 5: Comparison of Power Consumption and Ab-
solute Overhead for CNN Inference on FPGA

Scenario Fault Type Power (W) Overhead (W)
No-Fault None 5.00 -

Auto-Healer Transient 5.50 0.50
Auto-Healer Permanent 5.80 0.80

As shown in Table 5, our experimental results demonstrate
the minimal power overhead introduced by the self-healing
mechanism, making it highly suitable for energy-constrained
ADS applications. This efficiency enables extended oper-
ational time and ensures the integration of fault-tolerant
mechanisms without exceeding the stringent power budgets
of such systems.

Impact on Higher ADS Levels. The proposed architec-
ture’s ability to maintain low latency and high reliability
makes it particularly suitable for higher ADS levels. As auton-
omy increases, so does the demand for advanced DNN com-
putations, such as 360-degree object tracking and SLAM [37].
By accelerating inference and incorporating self-healing
mechanisms, the architecture ensures both performance and
reliability, overcoming the latency and power challenges
associated with advanced ADS tasks.
Table 6 and Table 7 show the FPGA resource utilization

for implementing the CNN without and with self-healing.
The self-healing system introduces minimal overhead,

with LUT utilization increasing from 0.35% to 1.91% and
BRAM usage from 0.65% to 2.54%, ensuring enhanced relia-
bility with negligible resource impact.

7.2.2 Reliability Metrics Analysis. We study reliability
metrics, such as Mean Time to Repair (MTTR) and Mean

Table 6: FPGA Resource Utilization for CNN

Resource Type Available Utilized Utilization (%)

LUT 2532960 8894 0.35
LUTRAM 459360 1020 0.22
FF 5065920 11372 0.22
DSP 2880 0 0
BRAM 2520 17 0.65
I/O 1456 120 8.24

Table 7: FPGA Resource Utilization for the Whole Sys-
tem

Resource Type Available Utilized Utilization (%)

LUT 2532960 48384 1.91
LUTRAM 459360 4449 0.97
FF 5065920 55548 1.10
DSP 2880 0 0
BRAM 2520 64 2.54
I/O 1456 122 8.38

Time to Detect (MTTD), to evaluate the fault tolerance and
dependability of the proposed self-healing architecture for
ADS. These metrics quantify the system’s capability to de-
tect faults promptly and restore functionality, ensuring high
availability and fault resilience in safety-critical scenarios [25,
40, 65]. MTTD measures the average time required to detect
and classify a fault, while MTTR reflects the time needed
to repair the fault after detection, encompassing isolation,
correction, and recovery processes.

Results and Analysis. The experimental results vali-
dated the effectiveness of the self-healing architecture. Ta-
ble 8 summarizes the detection and repair times for transient
and permanent faults under various scenarios.

Table 8: Reliability Metrics Across Fault Scenarios

Metric Transient Fault Permanent Fault

MTTD (ns) 20 60
MTTR (ns) 20 60
Total (ns) 40 120

The metrics presented in Table 8 illustrate that transient
faults were detected and repaired within a total of 40 ns,
while permanent faults required 120 ns. The architecture
demonstrated robust performance across all scenarios, main-
taining low detection and repair times even under challeng-
ing conditions. To evaluate the self-healing mechanism’s

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Ali Suvizi and Guru Venkataramani

impact on system performance, the latency overhead was
calculated by comparing the normal CNN execution time
(0.95080ms) with the execution time under fault conditions
with healing. For transient faults, the healing process intro-
duced a latency overhead of approximately 0.0042%, while
for permanent faults, the overhead was 0.0126%. These negli-
gible overheads demonstrate the efficiency of the self-healing
architecture in maintaining real-time operation while cor-
recting faults.
Our experimental results underscore the architecture’s

capability to handle both transient and permanent faults ef-
fectively, paving way toward compliance for stringent safety
and reliability requirements of ADS standards like ASIL-D.

8 Related Work
Baleani et al. [6] presented fault tolerance architecture perfor-
mance in single-chip multi-core processors targeting safety-
critical automotive applications. Stoffel and Sax [53] pre-
sented "Voter-as-a-Service", a framework using distributed re-
dundant copies of automotive applications over multi-ECUs
interconnected using LAN, and therefore resilient to system-
level faults. Li and Song [9] implemented an ADS design
featuring three subsystems: braking, driving, and steering,
along with fault tolerance algorithms. Likewise, fault toler-
ance methods that implement an urban autonomous-driving
system are also realized through the Stadtpilot by Volkswa-
gen and showed practical realization potential for such sys-
tems [30, 41]. These represent the growing emphasis being
placed on robust ADS designs considering sensor failures,
computation errors, and control inaccuracies. In the domain
of Distributed Fault-Tolerant Systems, Ishigooka et al. [26]
present different architecture-level designs to attain fail-
operational capabilities of autonomous driving by replicating
critical operations to handle the faults with higher efficiency.
Similarly, Portet et al. [43] explored software-only TMR ap-
proaches for commercial-off-the-shelf GPUs, demonstrating
that execution staggering has the potential to meet standards
such as ASIL-D. Meanwhile, in [44], Poudel et al. compared
the dependability of the GPGPU- and FPGA-based MPSoC
ECU architectures using both redundant multi-threading and
self-reconfigurable DMR for X-by-wire systems in ADS.

In the context of fault tolerance of CNNS, Zhao et al. [67]
developed a new approach to fault-tolerant CNNs, dubbed
FT-CNN, which deploys ABFT schemes in order to perform
robust CNN inference. FT-CNN also supports bias operations,
grouped convolution, and backpropagation, therefore extend-
ing to a wide range of configurations. However, it relies so
much on the IntelCaffe framework and assumes single-fault
model limitations to complex, realistic conditions in ADS
applications, for instance. These impose requirements for fur-
ther innovations within such methods to handle and further

optimize reliability in multi-directives, hardware-specific
topological architectures such as FPGA-Based, specifically
for ADS Pipelines.

Recently, a novel FPGA-based CNN accelerator proposed
in Syed et al. [56] includes fault tolerance and reconfig-
urability as supportive technologies for multi-modal multi-
task applications. Their design, by the use of shared-layer
methodologies, suits every one of the operational modes re-
quired: reliability-optimizing [31], performance-optimizing,
and energy-efficient-optimizing. They demonstrate how ef-
fective Triple Modular Redundancy really is for error re-
silience in combination with pruning and quantization to
bring hardware-resource utilization down by at least an or-
der of magnitude. While their approach yields impressive
results in terms of accuracy and performance on FPGAs, its
implications on other platforms and in real-time systems,
such as ADS, have been less explored. More opportunities for
further advancements would be opened up in safety-critical
and latency-sensitive areas.

9 Conclusion
This paper proposes a self-healing hardware architecture
for enhancing reliability during the perception stage of an
ADS system. Leveraging DMR and FPGA-based reconfig-
urability, the system ensures seamless automatic fault de-
tection and correction. Additional energy consumption is
minimized by activating the self-healing module only upon
detected faults, facilitated by lightweight synchronization
mechanisms. Our experimental results demonstrate a sig-
nificant increase in fault tolerance and reliability, achieving
a latency of 0.95092ms, power consumption of 5.8W, area
utilization of 1.91% LUTs and 2.54% BRAMs, and exception-
ally low MTTR of 40 ns for transient faults and 120 ns for
permanent faults. These results validate the effectiveness of
the architecture in safety-critical ADAS applications while
meeting stringent real-time operational constraints.

Acknowledgments
This work is supported by the Office of Naval Research under
Grant N00014-24-1-2046.

References
[1] Udit Kumar Agarwal, Abraham Chan, Ali Asgari, and Karthik Pat-

tabiraman. 2023. Towards Reliability Assessment of Systolic Arrays
against Stuck-at Faults. In 2023 53rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks-Supplemental Volume
(DSN-S). IEEE, 230–236.

[2] Mohammad Hasan Ahmadilivani, Seyedhamidreza Mousavi, Jaan Raik,
Masoud Daneshtalab, and Maksim Jenihhin. 2024. Cost-Effective Fault
Tolerance for CNNs Using Parameter Vulnerability Based Hardening
and Pruning. In 2024 IEEE 30th International Symposium on On-Line
Testing and Robust System Design (IOLTS). IEEE, 1–7. https://doi.org/
10.1109/IOLTS60994.2024.10616072

https://doi.org/10.1109/IOLTS60994.2024.10616072
https://doi.org/10.1109/IOLTS60994.2024.10616072

Auto-Healer: Self-Healing Hardware for Perception Stage Faults in Autonomous Driving Systems ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[3] Miguel Alcon, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti,
Jaume Abella, and Francisco J Cazorla. 2020. Timing of autonomous
driving software: Problem analysis and prospects for future solutions.
In 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 267–280.

[4] Audi, Intel, Volkswagen, and Others. 2019. Safety First for Automated
Driving. https://www.aptiv.com/en/newsroom/article/automotive-
and-mobility-industry-leaders-publish-first-of-its-kind-framework-
for-safe-automated-driving-systems. Accessed: 2024-12-18.

[5] Baidu Apollo. 2018. Baidu Apollo: An Open Autonomous Driving
Platform. http://apollo.auto/. Accessed: 2024-12-18.

[6] Massimo Baleani, Alberto Ferrari, Leonardo Mangeruca, Alberto
Sangiovanni-Vincentelli, Maurizio Peri, and Saverio Pezzini. 2003.
Fault-tolerant platforms for automotive safety-critical applications. In
Proceedings of the 2003 International Conference on Compilers, Architec-
ture and Synthesis for Embedded Systems. ACM, 170–177.

[7] David J Bryant. 2006. Rethinking OODA: Toward a modern cognitive
framework of command decision making. Military Psychology 18, 3
(2006), 183–206.

[8] Cadence Design Systems. 2024. Functional Safety Methodologies for
Automotive Applications. https://www.multimediadocs.com/assets/
cadence_emea/documents/functional_safety_methodologies_for_
automotive_applications.pdf. Accessed: 2024-12-18.

[9] Li DanYong and Song YongDuan. 2012. Adaptive fault-tolerant track-
ing control of 4WS4WD road vehicles: A fully model-independent
solution. In Proceedings of the 31st Chinese Control Conference. IEEE,
485–492.

[10] Preet Derasari, Kailash Gogineni, and Guru Venkataramani. 2023. May-
alok: A cyber-deception hardware using runtime instruction infusion.
In 2023 IEEE 34th International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP). IEEE, 33–40.

[11] Preet Derasari, Kailash Gogineni, and Guru Venkataramani. 2023.
Mayavi: A cyber-deception hardware for memory load-stores. In Pro-
ceedings of the Great Lakes Symposium on VLSI 2023. Association for
Computing Machinery, 563–568.

[12] Preet Derasari and Guru Venkataramani. 2024. Maya: Hardware En-
hanced Customizable Defenses at the User-Kernel Interface. In 2024
International Symposium on Secure and Private Execution Environment
Design (SEED). IEEE, 50–61.

[13] Javier Fernández, Jon Perez, Irune Agirre, Imanol Allende, Jaume
Abella, and Francisco J Cazorla. 2021. Towards Functional Safety
Compliance of Matrix–Matrix Multiplication for Machine Learning-
Based Autonomous Systems. Journal of Systems Architecture 121 (2021),
102298.

[14] Zhen Gao, Han Zhang, Yi Yao, Jiajun Xiao, Shulin Zeng, Guangjun Ge,
Yu Wang, Anees Ullah, and Pedro Reviriego. 2022. Soft error tolerant
convolutional neural networks on FPGAs with ensemble learning.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 30, 3
(2022), 291–302.

[15] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia,
Chen, and Qi Alfred. 2020. A comprehensive study of autonomous vehi-
cle bugs. In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. ACM, 385–396.

[16] Florian Geissler, Syed Qutub, Sayanta Roychowdhury, Ali Asgari, Yang
Peng, AkashDhamasia, Ralf Graefe, Karthik Pattabiraman, andMichael
Paulitsch. 2021. Towards a safety case for hardware fault tolerance
in convolutional neural networks using activation range supervision.
arXiv preprint arXiv:2108.07019 (2021). https://arxiv.org/abs/2108.
07019

[17] Kailash Gogineni, Yongsheng Mei, Karthikeya Gogineni, Peng Wei,
Tian Lan, and Guru Venkataramani. 2024. Characterizing and Opti-
mizing the End-to-End Performance of Multi-Agent Reinforcement

Learning Systems. In 2024 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 224–235.

[18] Mukul Anil Gosavi, Benjamin B Rhoades, and James M Conrad. 2018.
Application of functional safety in autonomous vehicles using ISO
26262 standard: A survey. In SoutheastCon 2018. IEEE, 1–6.

[19] Pamela M Greenwood, John K Lenneman, and Carryl L Baldwin. 2022.
Advanced Driver Assistance Systems (ADAS): Demographics, Pre-
ferred Sources of Information, and Accuracy of ADAS Knowledge.
Transportation Research Part F: Traffic Psychology and Behaviour 86
(2022), 131–150.

[20] Dominique Gruyer, Valentin Magnier, Karima Hamdi, Laurène Clauss-
mann, Olivier Orfila, and Andry Rakotonirainy. 2017. Perception,
information processing and modeling: Critical stages for autonomous
driving applications. Annual Reviews in Control 44 (2017), 323–341.

[21] Muhammad Abdullah Hanif and Muhammad Shafique. 2020. Depend-
able deep learning: Towards cost-efficient resilience of deep neural
network accelerators against soft errors and permanent faults. In 2020
IEEE 26th International Symposium on On-Line Testing and Robust Sys-
tem Design (IOLTS). IEEE, 1–4.

[22] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal
basis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4, 2 (1968), 100–107.

[23] Yi He, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju,
Nishant Patil, and Yanjing Li. 2023. Understanding and mitigating
hardware failures in deep learning training systems. In Proceedings
of the 50th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 1–16.

[24] Christina Houben and Sebastian Houben. 2015. Endowing advanced
driver assistance systems with fault tolerance. Annual Reviews in
Control 39 (2015), 58–67.

[25] HamidReza Imani, Jeff Anderson, Samuel Farid, Abdolah Amirany, and
Tarek El-Ghazawi. 2024. RLFL: A Reinforcement Learning Aggrega-
tion Approach for Hybrid Federated Learning Systems Using Full and
Ternary Precision. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems (2024).

[26] Tasuku Ishigooka, Shinya Honda, and Hiroaki Takada. 2018. Cost-
effective redundancy approach for fail-operational autonomous driv-
ing system. In 2018 IEEE 21st International Symposium on Real-Time
Distributed Computing (ISORC). IEEE, 107–115.

[27] Leonardo Iurada, Niccolò Cavagnero, Fernando Fernandes Dos Santos,
Giuseppe Averta, Paolo Rech, and Tatiana Tommasi. 2024. Transient
Fault Tolerant Semantic Segmentation for Autonomous Driving. arXiv
preprint arXiv:2408.16952 (2024). Preprint available at https://arxiv.
org/abs/2408.16952.

[28] Adam Jacobs, Grzegorz Cieslewski, Alan D George, Ann Gordon-Ross,
and Herman Lam. 2012. Reconfigurable fault tolerance: A comprehen-
sive framework for reliable and adaptive FPGA-based space computing.
ACM Transactions on Reconfigurable Technology and Systems (TRETS)
5, 4 (2012), 1–30.

[29] Belal Jahannia, Abdolah Amirany, Elham Heidari, and Hamed Dalir.
2025. DaLAMED: A Clock-Frequency and Data-Lifetime-Aware
Methodology for Energy-Efficient Memory Design in Edge Devices.
IEEE Access (2025).

[30] Ehsan Mousavi Khaneghah, Amirhosein Reyhani ShowkatAbad, Nos-
ratollah Shadnoush, Nigar Ismayilova, Reyhaneh Noorabad Ghahroodi,
Elviz Ismayilov, Mohammad Saeed Nabati Saravani, Fatemeh Taheri
Sarraf, and Ali Soveizi. 2018. ExaMig matrix: Process migration based
on matrix definition of selecting destination in distributed exascale
environments. Azerbaijan Journal of High Performance Computing 1, 1
(2018), 20–41.

https://www.aptiv.com/en/newsroom/article/automotive-and-mobility-industry-leaders-publish-first-of-its-kind-framework-for-safe-automated-driving-systems
https://www.aptiv.com/en/newsroom/article/automotive-and-mobility-industry-leaders-publish-first-of-its-kind-framework-for-safe-automated-driving-systems
https://www.aptiv.com/en/newsroom/article/automotive-and-mobility-industry-leaders-publish-first-of-its-kind-framework-for-safe-automated-driving-systems
http://apollo.auto/
https://www.multimediadocs.com/assets/cadence_emea/documents/functional_safety_methodologies_for_automotive_applications.pdf
https://www.multimediadocs.com/assets/cadence_emea/documents/functional_safety_methodologies_for_automotive_applications.pdf
https://www.multimediadocs.com/assets/cadence_emea/documents/functional_safety_methodologies_for_automotive_applications.pdf
https://arxiv.org/abs/2108.07019
https://arxiv.org/abs/2108.07019
https://arxiv.org/abs/2408.16952
https://arxiv.org/abs/2408.16952

ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Ali Suvizi and Guru Venkataramani

[31] Farid Kochakkashani, Vahid Kayvanfar, and Roberto Baldacci. 2024.
Innovative Applications of Unsupervised Learning in Uncertainty-
Aware Pharmaceutical Supply Chain Planning. IEEE Access 12 (2024),
107984–107999. https://doi.org/10.1109/ACCESS.2024.3435439

[32] Leonidas Koutras and Zoe Doulgeri. 2020. Dynamic Movement Prim-
itives for Moving Goals with Temporal Scaling Adaptation. In 2020
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
144–150.

[33] A. Krizhevsky. 2009. The CIFAR-10 dataset. Online. Available:
http://www.cs.toronto.edu/~kriz/cifar.html.

[34] Maya Kumar and Berend van der Kolk. 2020. Audi A8: The World’s
First Level 3 Autonomous Vehicle. https://hbsp.harvard.edu/product/
W20134-PDF-ENG. Accessed: 2024-12-18.

[35] LeddarTech. 2024. An Explanation of Perception Performance
Paradigm. https://leddartech.com/app/uploads/dlm_uploads/2024/
01/White-Paper_An-Explanation-of-Perception-Performance-
Paradigm_V1.0_EN.pdf. Accessed: 2024-12-18.

[36] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E
Haque, Lingjia Tang, and Jason Mars. 2018. The Architectural Implica-
tions of Autonomous Driving: Constraints and Acceleration. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).
ACM, 751–766.

[37] Shaoshan Liu, Jie Tang, Zhe Zhang, and Jean-Luc Gaudiot. 2017. Com-
puter architectures for autonomous driving. Computer 50, 8 (2017),
18–25.

[38] Mobileye. 2024. Understanding L2+ in Five Questions. https://www.
mobileye.com/blog/understanding-l2-in-five-questions/. Accessed:
2024-12-18.

[39] Iraj Moghaddasi, Saeid Gorgin, and Jeong-A Lee. 2023. Dependable
DNN Accelerator for Safety-Critical Systems: A Review on the Aging
Perspective. IEEE Access 11 (2023), 89803–89834. https://doi.org/10.
1109/ACCESS.2023.3300376

[40] National Institute of Standards and Technology (NIST). 2006. Per-
formance Metrics for Intelligent Systems (PerMIS) Workshop. http:
//dx.doi.org/10.6028/NIST.SP.1062. Workshop held in Gaithersburg,
Maryland, USA, August 21-23, 2006. Co-located with the IEEE Interna-
tional Workshop on Safety, Security, and Rescue Robotics (SSRR).

[41] Tobias Nothdurft, Peter Hecker, Sebastian Ohl, Falko Saust, Markus
Maurer, Andreas Reschka, and Jürgen Rüdiger Böhmer. 2011. Stadt-
pilot: First fully autonomous test drives in urban traffic. In 2011 14th
International IEEE Conference on Intelligent Transportation Systems
(ITSC). IEEE, 919–924.

[42] Optima Design Automation. 2019. ISO 26262 Primer: White
Paper. https://www.optima-da.com/wp-content/uploads/2019/10/
Optima-ISO-26262-Primer-White-Paper-191028.pdf. Accessed: 2024-
12-18.

[43] Sergi Alcaide Portet, Leonidas Kosmidis, Carles Hernandez, and Jaume
Abella. 2020. Software-only triple diverse redundancy on GPUs for
autonomous driving platforms. In 2020 50th Annual IEEE-IFIP Interna-
tional Conference on Dependable Systems and Networks-Supplemental
Volume (DSN-S). IEEE, 82–88.

[44] Bikash Poudel, Naresh Kumar Giri, and Arslan Munir. 2017. Design
and comparative evaluation of GPGPU-and FPGA-based MPSoC ECU
architectures for secure, dependable, and real-time automotive CPS. In
2017 IEEE 28th International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE, 29–36.

[45] Taufiq Rahman, Andrew Liu, Daniel Cheema, Victor Chirila, and Do-
minique Charlebois. 2023. ADAS Reliability Against Weather Condi-
tions: Quantification of Performance Robustness. In 27th International
Technical Conference on the Enhanced Safety of Vehicles (ESV) National
Highway Traffic Safety Administration. National Highway Traffic Safety

Administration (NHTSA), 306–310.
[46] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and

David I August. 2005. SWIFT: Software implemented fault tolerance. In
International Symposium on Code Generation and Optimization. IEEE,
243–254.

[47] Mohammad Hadi Rezayati, Abdolah Amirany, Mohammad Hossein
Moaiyeri, and Kian Jafari. 2025. A new method for securing binary
deep neural networks against model replication attacks using magnetic
tunnel junctions. International Journal of Information Security 24, 1
(2025), 1–16.

[48] SAE International. 2014. AUTOMATED DRIVING, Levels of driving
automation are defined in new SAE International standard J3016. http:
//www.sae.org/misc/pdfs/automated_driving.pdf.

[49] Bülent Sari. 2020. Fail-operational Safety Architecture for ADAS/AD
Systems. Springer.

[50] John M Scanlon, Kristofer D Kusano, Laura A Fraade-Blanar, Timo-
thy L McMurry, Yin-Hsiu Chen, and Trent Victor. 2024. Benchmarks
for retrospective automated driving system crash rate analysis using
police-reported crash data. Traffic Injury Prevention 25, 1 (2024), 1–15.
https://doi.org/10.1080/15389588.2024.2380522

[51] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. 2021.
Review on model predictive control: An engineering perspective. The
International Journal of Advanced Manufacturing Technology 117, 5
(2021), 1327–1349.

[52] Omais Shafi, Chinmay Rai, Rijurekha Sen, and Gayathri Anantha-
narayanan. 2021. Demystifying TensorRT: Characterizing Neural
Network Inference Engine on NVIDIA Edge Devices. In 2021 IEEE
International Symposium on Workload Characterization (IISWC). IEEE,
226–237. https://doi.org/10.1109/IISWC53511.2021.00030

[53] Martin Stoffel and Eric Sax. 2023. Distributed Voters for Automotive
Applications. In 2023 IEEE Intelligent Vehicles Symposium (IV). IEEE,
1–8. https://doi.org/10.1109/IV55152.2023.10186579

[54] Ali Suvizi, Azim Farghadan, and Morteza Saheb Zamani. 2023. A par-
allel computing architecture based on cellular automata for hydraulic
analysis of water distribution networks. J. Parallel and Distrib. Comput.
178 (2023), 11–28. https://doi.org/10.1016/j.jpdc.2023.03.009

[55] Ali Suvizi, Suresh Subramaniam, Tian Lan, and Guru Venkataramani.
2024. Exploring In-Memory Accelerators and FPGAs for Latency-
Sensitive DNN Inference on Edge Servers. In 2024 IEEE Cloud Sum-
mit. IEEE, Arlington, VA, USA, 1–6. https://doi.org/10.1109/Cloud-
Summit61220.2024.00007

[56] Rizwan Tariq Syed, Yanhua Zhao, Junchao Chen, Marko Andjelkovic,
Markus Ulbricht, and Milos Krstic. 2024. FPGA Implementation
of a Fault-Tolerant Fused and Branched CNN Accelerator With Re-
configurable Capabilities. IEEE Access 12 (2024), 57847 – 57862.
https://doi.org/10.1109/ACCESS.2024.3392240

[57] Hamid Tabani, Roger Pujol, JaumeAbella, and Francisco J Cazorla. 2020.
A Cross-Layer Review of Deep Learning Frameworks to Ease Their
Optimization and Reuse. In 2020 IEEE 23rd International Symposium
on Real-Time Distributed Computing (ISORC). IEEE, 144–145. https:
//doi.org/10.1109/ISORC49007.2020.00030

[58] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Bannon,
Bill McGee, Benjamin Floering, Ankit Jalote, Christopher Hsiong, Sahil
Arora, Atchyuth Gorti, et al. 2020. Compute solution for Tesla’s full
self-driving computer. IEEE Micro 40, 2 (2020), 25–35.

[59] The Autoware Foundation. 2016. Autoware: An Open Autonomous
Driving Platform. https://github.com/CPFL/Autoware/. Accessed:
2024-12-18.

[60] The New York Times. 2019. Self-Driving Uber Car Kills Pedestrian in
Arizona, Where Robots Roam. https://www.nytimes.com/2018/03/19/
technology/uber-driverless-fatality.html. Accessed: 2024-12-18.

https://doi.org/10.1109/ACCESS.2024.3435439
http://www.cs.toronto.edu/~kriz/cifar.html
https://hbsp.harvard.edu/product/W20134-PDF-ENG
https://hbsp.harvard.edu/product/W20134-PDF-ENG
https://leddartech.com/app/uploads/dlm_uploads/2024/01/White-Paper_An-Explanation-of-Perception-Performance-Paradigm_V1.0_EN.pdf
https://leddartech.com/app/uploads/dlm_uploads/2024/01/White-Paper_An-Explanation-of-Perception-Performance-Paradigm_V1.0_EN.pdf
https://leddartech.com/app/uploads/dlm_uploads/2024/01/White-Paper_An-Explanation-of-Perception-Performance-Paradigm_V1.0_EN.pdf
https://www.mobileye.com/blog/understanding-l2-in-five-questions/
https://www.mobileye.com/blog/understanding-l2-in-five-questions/
https://doi.org/10.1109/ACCESS.2023.3300376
https://doi.org/10.1109/ACCESS.2023.3300376
http://dx.doi.org/10.6028/NIST.SP.1062
http://dx.doi.org/10.6028/NIST.SP.1062
https://www.optima-da.com/wp-content/uploads/2019/10/Optima-ISO-26262-Primer-White-Paper-191028.pdf
https://www.optima-da.com/wp-content/uploads/2019/10/Optima-ISO-26262-Primer-White-Paper-191028.pdf
http://www.sae.org/misc/pdfs/automated_driving.pdf
http://www.sae.org/misc/pdfs/automated_driving.pdf
https://doi.org/10.1080/15389588.2024.2380522
https://doi.org/10.1109/IISWC53511.2021.00030
https://doi.org/10.1109/IV55152.2023.10186579
https://doi.org/10.1016/j.jpdc.2023.03.009
https://doi.org/10.1109/Cloud-Summit61220.2024.00007
https://doi.org/10.1109/Cloud-Summit61220.2024.00007
https://doi.org/10.1109/ACCESS.2024.3392240
https://doi.org/10.1109/ISORC49007.2020.00030
https://doi.org/10.1109/ISORC49007.2020.00030
https://github.com/CPFL/Autoware/
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html

Auto-Healer: Self-Healing Hardware for Perception Stage Faults in Autonomous Driving Systems ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

[61] Ivan Todorović, Ivana Isakov, and Marko Gecic. 2023. Development
of Electric Vehicles Applications Using AURIX™ Microcontroller and
Typhoon HIL. In Real-Time Simulation and Hardware-in-the-Loop
Testing Using Typhoon HIL. Springer, 157–186.

[62] Abdullah Turan. 2024. PID controller design with a new method based
on proportional gain for cruise control system. Journal of Radiation
Research and Applied Sciences 17, 1 (2024), 100810.

[63] U.S. Department of Transportation – Federal Highway Administration.
2021. Highway Statistics: Status of the Nation’s Highways, Bridges,
and Transit: Conditions & Performance Report. https://www.fhwa.
dot.gov/policy/24cpr/ Accessed: [Insert Date Here].

[64] U.S. Department of Transportation, National Highway Traffic Safety
Administration. 2017. Federal Automated Vehicles Policy: Accelerating
the Next Revolution in Roadway Safety. https://www.transportation.

gov/AV.
[65] Seongwoo Woo. 2020. Modern Definitions in Reliability Engineering.

In Reliability Design of Mechanical Systems. Springer, Singapore, 53–99.
https://doi.org/10.1007/978-981-13-7236-0_3

[66] Zheng Xu and Jacob Abraham. 2019. Safety design of a convolutional
neural network accelerator with error localization and correction. In
Proceedings of the 2019 IEEE International Test Conference (ITC). IEEE,
Washington, DC, USA, 1–10.

[67] Kai Zhao, Sheng Di, Sihuan Li, Xin Liang, Yujia Zhai, Jieyang Chen,
Kaiming Ouyang, Franck Cappello, and Zizhong Chen. 2020. FT-CNN:
Algorithm-based fault tolerance for convolutional neural networks.
IEEE Transactions on Parallel and Distributed Systems 32, 7 (2020), 1677–
1689.

https://www.fhwa.dot.gov/policy/24cpr/
https://www.fhwa.dot.gov/policy/24cpr/
https://www.transportation.gov/AV
https://www.transportation.gov/AV
https://doi.org/10.1007/978-981-13-7236-0_3

	Abstract
	1 Introduction
	2 Background
	2.1 Autonomous Driving
	2.2 ADS Functional Safety Standards
	2.3 Self-Healing

	3 Threat Model
	3.1 Faults in ADS Pipeline Stages
	3.2 Fault Types

	4 Limitations of Current Designs
	5 Design Overview of Auto-Healer
	5.1 Key Features
	5.2 Criteria for Self-Healing System Design
	5.3 Auto-Healer Modules

	6 Implementation
	7 Experimental Results
	7.1 Experimental Setup
	7.2 Experimental Results and Analysis

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

