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Abstract

Graph community detection is widely applied in fields such

as genetic engineering and social network analysis. As the

scale of input graphs continues to grow and multi-GPU plat-

forms become increasingly prevalent, utilizing the storage

capacity and computational power of these platforms to scale

graph community detection algorithms has become more

feasible. However, existing multi-GPU graph community

detection methods are constrained by the traditional CPU-

dominated communication model, and fail to simultaneously

account for the irregular sparse memory access patterns and

the latency disparities between local and remote commu-

nication. Consequently, they do not fully exploit modern

high-speed GPU interconnect technologies. Furthermore,

while current solutions propose various strategies to miti-

gate the decline in clustering quality during parallelization,

these approaches are often inefficient or compromise clus-

tering quality. Finally, to address the high memory overhead

of the algorithms, existing Multi-GPU solutions extend the

graph size limit at the cost of reduced performance.

To address these challenges, we propose MG-𝛼GCD, a

novel graph community detection algorithm designed for

multi-GPU platforms. First, MG-𝛼GCD introduces a loading

balancing and latency-aware computation-communication

pipeline that effectively mitigates the overhead of high-

latency remote communication. Second, MG-𝛼GCD incorpo-

rates a bidirectional probing heuristic to enhance execution

efficiency while outperforming existing methods in cluster-

ing quality. Lastly, MG-𝛼GCD employs a two-phase graph

coarsening algorithm consisting of a symbolic phase and a

numeric phase, which significantly reduces GPU peak mem-

ory usage and minimizes data transfers between CPU and
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GPU. Extensive experiments demonstrate that MG-𝛼GCD

achieves average speedups of 34.60x, 30.75x, and 11.31x com-

pared to the state-of-the-art solutions Grappolo, nido, and

cuGraph, respectively.
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1 Introduction

Communities in networks identify entities with strong in-

teractions. For example, in social networks, communities

can be groups of closely connected users. Early research

introduced many community detection (or graph cluster-

ing) methods, which primarily included approaches based

on graph partitioning[21], spectral analysis[22], hierarchical

structures[18], and density[1]. Later studies leveraged the

rich information embedded in real-world graphs, such as

edge weights, to develop more advanced methods. Among

these, themodularity-based heuristic approach, known as the

Louvain method[3], uses modularity[23] to measure the co-

hesion within communities. Due to its efficiency and its abil-

ity to reveal hierarchical community structures, the Louvain

method has been widely adopted. Since real-world graphs

are often large in scale, developing parallel community de-

tection algorithms[9, 19, 20, 28, 33, 34] capable of efficiently

processing large-scale graphs holds significant research and

practical value.
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Although some efforts[6, 25] have been made to leverage

the computational, storage, and communication capabilities

of multi-GPU platforms (e.g., NVIDIA DGX) to scale up the

performance of the Louvain method, the runtime perfor-

mance of existing solutions has not scaled proportionally

with the capabilities of these platforms. Several factors con-

tribute to this issue. Firstly, existing solutions are limited by

traditional communication paradigms and fail to adequately

account for the architecture of multi-GPU platforms and

the communication patterns of the algorithms. Despite the

advantages of modern high-speed GPU interconnect tech-

nologies (e.g., NVLink), their scalability on real-world graphs

remains below expectations. Secondly, the Louvain algorithm

often relies on carefully designed heuristics to mitigate the

decline in clustering quality caused by parallelization. How-

ever, these heuristics[6, 19] frequently introduce additional

computational overhead or compromise solution quality to

enhance execution efficiency, highlighting the trade-off be-

tween execution efficiency and solution quality[6]. Thirdly,

the Louvain algorithm’s high peak memory cost presents

significant challenges in developing memory-efficient ap-

proaches. Existing solutions often neglect this issue or of-

fload the high memory-consuming processes to the CPU,

resulting in performance degradation.

To address these challenges, we propose a novel algo-

rithm design for accelerating Louvain graph community de-

tection on multi-GPU platforms, called MG-𝛼GCD. Firstly,

MG-𝛼GCD introduces a one-sided communication paradigm

and designs a well-structured computation-communication

pipeline that effectively balances the workload across GPU

logical processing units while accounting for inter-GPU

communication latency differences. Secondly, MG-𝛼GCD

incorporates a bidirectional probing heuristic, introducing

novel rules for more flexible control of movement directions.

This addresses parallelization challenges and significantly

enhances execution efficiency. Lastly, MG-𝛼GCD proposes

a fully multi-GPU two-phase graph coarsening algorithm

that separates memory requirement estimation from graph

construction.

We summarize our main contributions as follows:

• We design a well-structured computation-

communication pipeline that effectively hide

the costly inter-GPU communication.

• We incorporate a bidirectional probing heuristic,

which enhances both execution efficiency and clus-

tering solution quality.

• We propose a two-phase graph coarsening algorithm

that significantly reduces peak memory cost and mini-

mizes CPU-GPU data transfers.

• Comprehensive experiments demonstrate that MG-

𝛼GCD outperforms Grappolo, nido, and cuGraph,

achieving average speedups of 34.60x, 30.75x, and

11.31x, respectively. Furthermore, MG-𝛼GCD exhibits

better scalability, delivers higher clustering quality,

and significantly reduces storage costs.

2 Background

Given an undirected weighted graph 𝐺 (𝑉 , 𝐸,𝜔) where 𝑉 is

the set of vertices, 𝐸 is the set of edges, and 𝜔 represents

the set of edge weights, graph community detection aims

to partition the graph into a set of 𝑘 communities, denoted

as 𝑃 = {𝐶1,𝐶2, . . . ,𝐶𝑘 }. Modularity[23] (denoted as 𝑄) is the

metric used to evaluate the quality of the partition 𝑃 , and its

definition is as follows:

𝑄 =
∑︁
𝑖∈𝑉

𝑒𝑖→𝐶 (𝑖 )
2𝑚

−
∑︁
𝐶 𝑗 ∈𝑃

(𝑎𝐶 𝑗

2𝑚

)2
(1)

where 𝑒𝑖→𝐶 (𝑖 ) is the sum of the edge weights between

vertex 𝑖 and other vertices within its community 𝐶 (𝑖), 𝑚
denotes the total sum of all edge weights in graph 𝐺 . The

quantity 𝑎 (𝐶 𝑗 ) represents the sum of the weights of all edges

connected to the vertices in community 𝐶 𝑗 , defined as 𝑎𝐶 𝑗
=∑

𝑖∈𝐶 𝑗
𝑘𝑖 , where 𝑘𝑖 is the sum of the edge weights in the

adjacency list of vertex 𝑖 .

The Louvain method[3], a modularity-based derivative

algorithm, is a multi-phase iterative heuristic algorithm. Dur-

ing each iteration, communities are progressively built by

moving a vertex to a adjacent community to maximize the

modularity gain. For a vertex 𝑖 , originally belonging to com-

munity𝐶 (𝑖), the modularity gain (denoted as 𝛥𝑄) from mov-

ing it to a adjacent community 𝐶 𝑗 is defined as:

𝛥𝑄𝑖→𝐶 𝑗
=
𝑒𝑖→𝐶 𝑗

− 𝑒𝑖→𝐶 (𝑖 )\{𝑖 }

𝑚
+ 𝑘𝑖

𝑎𝐶 (𝑖 )\{𝑖 } − 𝑎𝐶 𝑗

𝑚2
(2)

where 𝑒𝑖→𝐶 𝑗
represents the sum of the edge weights be-

tween vertex 𝑖 and all vertices in the adjacent community

𝐶 𝑗 . The sum of the edge weights between vertex 𝑖 and

other vertices within its community, excluding itself, de-

noted as 𝑒𝑖→𝐶 (𝑖 )\{𝑖 } . Finally, 𝑎𝐶 (𝑖 )\{𝑖 } represents the sum of

the weights of all edges connected to the vertices in commu-

nity 𝐶 (𝑖), excluding vertex 𝑖 . The Louvain method consists

of two main steps: modularity optimization and graph coars-

ening:

Modularity Optimization. This step involves three parts:

1) Vertex Movement. For each vertex 𝑖 in the graph, the al-

gorithm iterates over all adjacent vertices of vertex 𝑖 and

calculates the modularity gain from moving vertex 𝑖 to the

community of its neighbor 𝑗 , denoted as𝐶 𝑗 , using Eq.(2). Ver-

tex 𝑖 is then moved to the adjacent community that yields the

maximum modularity gain. 2) Community Information Up-

date. After vertex movements are completed, the information
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of all affected communities is updated. 3) Modularity Calcu-

lation. After all vertex movements and community updates

are completed, the modularity of the current community

assignments is recalculated using Eq.(1). The modularity op-

timization process is repeated until the modularity converges

within the inner optimization loop.

Graph Coarsening. In this step, vertices within the same

community are collapsed into a new vertex, with the weight

of the new vertex being the sum of the weights of all vertices

in the community. Multiple edges between communities are

collapsed into a single new edge, with the weight of this

new edge being the sum of all original edge weights. The

coarsened graph then undergoes the modularity optimiza-

tion process again, and the process is repeated until the

modularity converges in the outer optimization loop.

3 Motivation

We propose various levels of optimization for the multi-GPU

Louvain method to leverage the inherent communication,

computation, and storage advantages of multi-GPU plat-

forms. These optimizations are primarily derived from our

three key observations.

Multi-GPU Communication Support: Our first obser-

vation highlights recent advancements in inter-GPU com-

munication technologies and their programming support.

NVLink interconnect technology, known for its lower la-

tency and higher bandwidth[4, 8, 16, 17], is widely uti-

lized in fields such as deep learning[13, 14, 32] and high-

performance simulations[10]. However, replacing PCIe with

NVLink does not directly enhance application performance

in these fields[16]. This limitation arises from the CPU-

dominated communication paradigm[4, 12, 16]. The NVSH-

MEM communication library[26] provides one-sided and

collective communication interfaces across different granu-

larities, initiated by various GPU logical units (e.g., threads,

warps, blocks). This approach reduces CPU interference in

communication pathways, thereby increasing GPU utiliza-

tion and offering greater programming flexibility.

Despite the potential of NVLink and NVSHMEM tech-

nologies to improve the scalability of general multi-GPU

applications, significant challenges remain for practical im-

plementations, particularly in graph clustering application

focused on in this paper. The absence of communication op-

timization strategies tailored to the memory access pattern

and latency, communication granularity, and the structural

characteristics of real-world graphs hinders achieving opti-

mal scalability.

Parallelization Challenge: Our second observation is

that parallelizing the Louvain method may delay conver-

gence and reduce clustering solution quality[19]. Concurrent

community movements can lead to swap and local maxima

issues, which are exacerbated in GPU environments. To en-

hance parallelism, GPU-based Louvain methods introduce

grid-wide synchronization between vertex movement and

community information update. The movement results of

each vertex are first written to a cache, meaning that all

threads make decisions using outdated information without

knowledge of the community assignments of other threads.

Existing solutions have sought to address the paralleliza-

tion challenges of Louvain by employing methods such as

graph coloring[19], minimum labeling[19], and batching[6].

However, they still exhibit a trade-off between performance

and solution quality[6], providing an opportunity for algo-

rithmic optimization to enhance execution efficiency while

maintaining solution quality.

High Storage Requirement: The third observation is

that GPU-based Louvain methods exhibit significant peak

memory overhead. This peak memory requirement arises

from the graph coarsening step, which necessitates inter-

mediate temporary space to simultaneously store both the

original and coarsened graphs. Additionally, because the

size of the coarsened graph cannot be determined before

its construction, over-allocating temporary space equal to

the size of the original graph exacerbates storage pressure.

Inspired by SpGEMM[24, 27, 35], we propose a two-phase

graph coarsening algorithm, comprising a symbolic phase

and a numeric phase, which separately calculate memory re-

quirements and construct the graph, distributing the storage

requirements evenly across multiple GPUs.

These observations and insights have driven us to design

MG-𝛼GCD, a high-performance multi-GPU Louvain method.

In the subsequent sections, we will describe the optimiza-

tions applied to the Louvain method at three different levels

and evaluate the superiority of our approach through com-

prehensive experiments in comparison to previous work.

4 Load Balancing & Latency-Aware Pipeline

The design of our pipeline primarily faces two challenges:

1) How to lay out graph data so that the input graph data

of Louvain and the memory of multi-GPU platforms can

be carefully matched to effectively address the trade-off be-

tween storage resource utilization and communication vol-

ume, which in turn influences the execution of the pipeline.

2) How to efficiently extract pipeline workloads from unpre-

dictable and irregular remote communications and local

computations, and design the mapping of the pipeline onto

GPU processing units to maximize its execution efficiency.

MG-𝛼GCD addresses these challenges through Graph Data

Management and Load Balancing & Latency-aware Pipeline

Construction and Mapping.
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4.1 Graph Data Management

The NVSHMEM remote data access requires the allocation

of a symmetric address space of the same size[26], restricting

remote access to only those symmetric data objects located

within this space. The placement of data in different memory

spaces (shared or private) determines its remote accessibility,

and the performance characteristics of these memory spaces

can vary significantly. Therefore, our placement strategy

encompasses two aspects: how to partition the graph data

across GPUs and how to determine the graph data placement

within different GPU memory spaces.
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(a) Graph Data Partition (b) Shared/Private Global Memory Layout

Community 2

Figure 1: (a) Graph data Partition. The vertices within

the purple dashed box belong to Community 2, while

the yellow vertices and gray vertices are allocated to

two different GPUs. (b) Shared/Private global memory

layout. “GPUi-i” is the vertex id range [lowerbound,

uppperbound] on the i-th GPU.

First, to fully utilize GPU memory and reduce peak mem-

ory costs, MG-𝛼GCD stores the graph structure in Com-

pressed Sparse Row (CSR) format and partitions it across

multiple GPUs while balancing the number of edges, as

shown in Figure 1(a). The offset array in the CSR format

is renumbered starting from zero on each GPU. The stor-

age structure of the edge weights array is identical to that of

edges and is therefore omitted from the figure. In addition

to the graph structure data, which constitutes the dominant

portion of storage consumption, MG-𝛼GCD further stores

clustering-related data, including vertex weights, community

IDs, and community weights across the memory of each GPU.

Vertex weights is initialized as the sum of the weights of their

adjacent edges, community IDs is initialized to be the same

as vertex IDs, and community weights is initialized to be the

same as vertex weights. Furthermore, each GPU stores a ver-

tex partition offset array of length n+1 (where n represents

the number of GPUs), which is used to obtain the GPU ID

where a vertex is located and the local vertex ID on that GPU.

To further optimize memory management, we place data

in distinct GPU memory spaces (Figure 1(b)). Specifically,

both community IDs and community weights are allocated

in shared global memory, which ensures consistent access

latencies across all GPUs. This uniform latency is essen-

tial for achieving a balanced distribution of remote access

workloads among the GPUs. Additionally, to meet the access

demands of graph structure data on remote GPUs during the

graph coarsening process, the graph structure data is stored

in shared global memory space. To retrieve the addresses

of target vertices/communities on remote GPUs, we utilize

the vertex partition offset array for address translation. The

vertex partition offset and vertex weights arrays are placed in

private global memory, which is only accessible to the local

GPU and offers low-latency access. The data layout necessi-

tates remote communication, while the disparity in memory

access latency across different processors poses a significant

challenge in designing strategies to hide communication.

4.2 Pipeline Construction & Mapping

4.2.1 Problem Description and Baseline. Consider𝑚 commu-

nity weight update tasks distributed across 𝑃 processors. For

each processor, the total cost of the community information

update process can be approximated as:

𝑇𝑐 =
𝑚

𝑃
𝛽𝑡𝑟𝐴 +

𝑚

𝑃
(1 − 𝛽)𝑡𝑙𝐴 (3)

where 𝛽 denotes the uncertain proportion of remote

atomic operations (typically high), 𝑡𝑟
𝐴
denotes the cost of

remote atomic operations for updating community weights

on remote GPUs, and 𝑡𝑙
𝐴
denotes the cost of local atomic

operations, with 𝑡𝑟
𝐴
being significantly greater than 𝑡𝑙

𝐴
.

Figure 1(a) illustrates a case of community information

updating, where vertices 𝑣3 and 𝑣6 move to the community

of 𝑣2 (𝐶2). Because the information for 𝐶2 and 𝑣6 resides in

different GPUs, 𝑣6 must perform a costly remote atomicAdd

operation to update the weight of 𝐶2.

The irregularity, sparsity, and heterogeneity of the commu-

nication pattern make updating community information the

most expensive communication operation, while also pos-

ing significant challenges in balancing the workload across

multiple GPUs and hiding communication latency.

4.2.2 Method Workflow. To address these challenges, we

construct and optimize a computation-communication

pipeline within a GPU kernel, The workflow of our pipeline

design can be summarized as follows:

Step 1: Irregularity-to-Regularity Transformation.

This step aims to convert irregular and costly communication

into regular, lower-latency communication. To achieve this,
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we designed a local community weight increment cache that

consolidates the irregular remote/local atomic operations

on community weights into local atomic operations on the

cache. The GPU logical processing units then initiate NVSH-

MEM remote/local access to a contiguous address space on

the community weight increment cache, followed by accu-

mulating the increments into the local community weight. At

this point, the total cost of community information updates

is given by:

𝑇𝑐 =
𝑚

𝑃
𝑡𝑙𝐴 +

𝑛

𝑃
(𝑃 − 1

𝑃
𝑡𝑟
𝑙
+ 1

𝑃
𝑡𝑙
𝑙
+ 𝑡𝑎) (4)

where 𝑛 denotes the number of communities,
𝑃−1
𝑃

denotes

the proportion of remote accesses,
1

𝑃
denotes the proportion

of local accesses, and 𝑡𝑟
𝑙
, 𝑡𝑙

𝑙
, and 𝑡𝑎 denote the costs of remote

access, local access, and local accumulation, respectively.

Compared to Eq.(3), this step eliminates the costly remote

atomic operations and identifies the proportions of remote

and local accesses. These features serve as the robust foun-

dation for designing a well-structured pipeline.

Load Balancing & Latency-aware Pipeline
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Figure 2: Pipeline construction andmapping. Each gray

box represents a workload handled by a GPU logical

processing unit, and is composed of the same number

of chunks. The workload and pipeline here are located

on one single GPU within a multi-GPU system.

Step 2: Load Balancing & Latency-Aware Pipeline

Construction. To further reduce communication overhead,

our insight is that NVSHMEM remote/local access can over-

lap with local accumulation processes. Thus, we propose

a three-stage pipeline design. The three stages include Re-

mote Load (RL), Local Load (LL), and Local Accumulate (LA).

Each community weight aggregation requires two stages.

The key to improving pipeline efficiency is balancing the

workload among the massive processing units of the GPUs

(e.g., SMs). To achieve this, we divide the communities within

the local range into chunks, ensuring a balanced number of

communities in each chunk. Subsequently, we mix remote

and local community aggregations into a single workload,

where workloads consist of an equal number of RL-LA or

LL-LA chunk pairs (Figure 2). Each workload is processed by

one GPU processing unit. Note that in the software pipeline,

chunks from different workloads can overlap since they are

processed by different GPU units, whereas chunks within

the same workload must maintain their original relative ex-

ecution order. Moreover, according to [16], the latency of

remote access is approximately twice that of local access. To

further improve pipeline efficiency, we categorize the work-

loads into two types: local workloads with lower latency,

and remote workloads with higher latency. The potential ex-

ecution pipeline illustrates that this construction effectively

overlaps three stages, thereby reducing the overall pipeline

execution time.

Step 3: Warp-Based Pipeline Mapping. Another key

factor influencing the maximization of pipeline execution ef-

ficiency is how to map the constructed pipeline to the logical

processing units (i.e., thread/warp/block). We choose warps

as the basic unit of work and set the number of communities

in each chunk to the number of threads in a warp (i.e., 32).

This decision is based on two main observations. First, as-

signing a single thread to handle different workloads can lead

to warp divergence, negatively impacting GPU execution

efficiency. Additionally, NVSHMEM remote/local memory

accesses initiated by threadswithin the samewarp can be coa-

lesced into a single memory transaction, thereby reducing ac-

cess latency. For NVSHMEM remote access, temporary stor-

age of remote data is required in local scratchpad memory.

To reduce the frequent global memory access, we allocate a

high-speed shared memory space of size 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑑𝑜𝑢𝑏𝑙𝑒) ×32
for each warp.

5 The Bi-Probing Heuristic

In this section, we present the design of our Bi-Probing

Modularity Optimization strategy, as well as the efficient

implementation and optimization tailored for the scale-free

characteristics of real-world graphs. Moreover, we extend

this approach to a multi-GPU platform utilizing NVSHMEM

as the communication backend.

5.1 Main idea

Recall that, community detection algorithms face signifi-

cant challenges with swap and local maxima issues during

parallelization[19]. Graph coloring heuristic introduces sub-

stantial computational overhead, while batching heuristic

incur frequent synchronization overheads and is only mod-

erately effective in mitigating parallelization challenges. The

minimum label heuristic restricts vertices to communities

with ids smaller than their current community, effectively
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resolving the swap problem. However, this unidirectional

constraint may prevent vertices frommoving to communities

with the highest modularity gain and reduces the frequency

of vertex movements. In the worst-case scenario, if the com-

munity id yielding the highest modularity gain consistently

exceeds the current community id, vertices may fail to move

or face delays in doing so. Thus, it would be beneficial if we

allowing vertices to move to any adjacent community. How-

ever, this introduces another challenge: How can we address

the parallelization issue under this condition?

5.2 Global & Local Bi-Probing

community 4

community 0

community 3

2

0

1

3 4

5

✗

Rule1 violated, 
movement failed.

✓

Rule1 satisfied, 
movement successful.

i-th iteration i+1-th iteration
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i-th iteration

(b) Global Bi-Probing
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✓
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Figure 3: Local and global Bi-Probing. The vertices

within the dashed boxes of different colors belong to

different communities.

We now present a heuristic algorithm, denoted as Bi-

Probing, that dynamically probes the potential for vertex

movement in both directions: increasing and decreasing com-

munity ids, while addressing parallelization challenges. Let

ℓ (𝑣) denote the id of the community to which vertex 𝑣 be-

longs, we select the probing direction and the destination

community according to the following rules:

Rule1(𝑣, 𝑖,𝐶, ℓ): During iteration 𝑖 , the movement direc-

tion of vertex 𝑣 is restricted as follows: 1) If 𝑖 is odd, 𝑣 can only

move to an adjacent community 𝐶 (𝑣 ′) where ℓ (𝑣 ′) > ℓ (𝑣); 2)
If 𝑖 is even, 𝑣 can only move to an adjacent community 𝐶 (𝑣 ′)
where ℓ (𝑣 ′) < ℓ (𝑣).

Rule2(𝑣, 𝑖,𝐶, ℓ):During iteration 𝑖 , when vertex 𝑣 encoun-

ters multiple adjacent communities𝐶 (𝑣 ′) with identical mod-

ularity gain, the following priority rules apply: 1) If 𝑖 is odd,

𝑣 move to the community 𝐶 (𝑣 ′) having the largest id; 2) If 𝑖 is
even, 𝑣 move to the community 𝐶 (𝑣 ′) having the smallest id.

Based on the differences in the scope of Rule1(𝑣, 𝑖,𝐶, ℓ),

we further propose two variants: Bi-Probing(Lo) and Bi-

Probing(Gl).

5.2.1 Bi-Probing(Lo). For each vertex 𝑣 , we first calculate

the modularity gain associated with moving to all adjacent

communities and select the direction with the highest gain.

Rule1(𝑣, 𝑖,𝐶, ℓ) is then applied, which states that a vertex

can only move in this direction if the condition is satisfied.

If this condition is not satisfied in the current iteration, the

Algorithm 1: Bi-Probing Heuristic

input :Bin (bin), edge weight (eWeight), vertex weight

(vtxWeight), community weight (comWeight),

community id of vertices (comId), total edge

weight (m), constraint direction (max_min).

output :New community id array (newComId)

1 foreach vertex in bin.vertices do

2 𝛥𝑄 ← 0;

3 srcComId ← comId[vertex.id];

4 dstComId ← 0;

5 𝑘𝑖 ← vtxWeight[vertex.id];

6 𝑎𝑐𝑖 ← nvshmem_g(comWeight[vertex.id]) - 𝑘𝑖 ;

7 foreach neighbor in vertex.neighbors do

8 𝑤𝑖 𝑗 ← eWeight[neighbor.id];

9 dstComId ← nvshmem_g(comId[neighbor.id]);

10 hash← (key ∗ SCAL) % tableSize;

11 /* Rule1 of Bi-Probing(Gl). */

12 if (dstComId > srcComId) = max_min then

13 while true do

14 Try to insert into table, and accumulate

𝑤𝑖 𝑗 to obtain 𝑒𝑖𝑐 𝑗 .

15 else if dstComId = srcComId then

16 𝑒𝑖𝑐𝑖 ← 𝑒𝑖𝑐𝑖 +𝑤𝑖 𝑗 ;

17 foreach Nonzero entry in hash table do

18 𝑎𝑐 𝑗 ← nvshmem_g(comWeight[entry.key]);

19 𝛥𝑄𝑡𝑚𝑝 ← Eq.(2)(𝑒𝑖𝑐 𝑗 , 𝑒𝑖𝑐𝑖 , 𝑎𝑐𝑖 , 𝑎𝑐 𝑗 , 𝑘𝑖 ,𝑚);

20 if 𝛥𝑄𝑡𝑚𝑝 > 𝛥𝑄 then

21 dstComId ← srcComId;

22 𝛥𝑄 ← 𝛥𝑄𝑡𝑚𝑝 ;

23 /* Rule2. */

24 if 𝛥𝑄𝑡𝑚𝑝 = 𝛥𝑄 and (dstComId > srcComId =

max_min) then

25 dstComId ← srcComId;

26 𝛥𝑄 ← 𝛥𝑄𝑡𝑚𝑝 ;

27 /* Rule1 of Bi-Probing(Lo). */

28 if (dstComId > srcComId) = max_min then

29 newComId[vertex.id]← dstComId;

vertex remains stationary, and the direction of the constraint

is alternated in the next iteration. In this variant, vertices

consistently move toward the direction of maximum modu-

larity gain within two iterations. For example, in Figure 3(a),

during iteration 𝑖 , 𝑣3 computes its modularity gains for mov-

ing to𝐶0 and𝐶4, identifying𝐶0 as offering the highest gain.

However, since the constraint requires vertices to move only

toward communities with larger labels in that iteration, 𝑣3

does not move. In the following iteration (𝑖 + 1), after the
constraint direction is alternated, 𝑣3 successfully moves to

𝐶0.
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5.2.2 Bi-Probing(Gl). For each vertex 𝑣 , we first apply

Rule1 to all adjacent directions. Only directions that sat-

isfy Rule1 are considered for potential movement (i.e., those

that contribute to the calculation of modularity gain). In this

variant, vertices always move during each iteration, even if the

chosen direction does not result in the highest modularity

gain, while also reducing nearly half of the modularity gain

computations. As shown in Figure 3(b), during iteration 𝑖 ,

𝑣3 is restricted to selecting communities with labels greater

than its own, which allows it to move to 𝐶4.

Overall, Bi-Probing(Lo) benefits from flexible bidirec-

tional probing, addressing parallelization issues while en-

suring that vertices move toward the direction of maximum

modularity gain. Compared to other heuristic methods, it

offers superior clustering results without the need for ad-

ditional costly optimizations. Bi-Probing(Gl), on the other

hand, benefits from a more proactive movement process, ac-

celerating the evolution of the community structure, thereby

significantly improving the algorithm’s convergence effi-

ciency. Additionally, due to the heuristic nature of the algo-

rithm, the loss in clustering quality is minimal. We demon-

strate this behavior in our experimental results (c.f. Section

7.6).

5.3 Scale-Free Aware Implementation

The scale-free characteristics of real-world graphs signifi-

cantly affect the execution efficiency of Bi-ProbingHeuristic

on multi-GPU platforms. To address this challenge, we man-

age and allocate computational units and GPU scratchpad

memory based on the number of vertex neighbors, aiming

to balance the workload among computational units and en-

hance GPU resource utilization. Specifically, we categorize

vertices into ten intervals (bins) based on their number of

neighbors, launching a separate CUDA kernel for each bin

and using stream technology to further increase the occu-

pancy of streaming multiprocessors (SMs). Furthermore, we

allocate between 2 to 1024 threads for vertex community

movement tasks across different bins using NVIDIA cooper-

ative group techniques[11], with each thread processing one

neighbor of the vertex. We also use hashmaps as accumu-

lators to calculate the sum of edge weights 𝑒𝑖→𝐶 𝑗
between

vertex 𝑖 and all vertices in its adjacent community 𝐶 𝑗 . To

maximize the utilization of the high-speed scratchpad mem-

ory, the size of hashmaps are set to the upper bound of the

number of neighbors for vertices within each bin.

In Algorithm 1, we detail the specific process of modularity

optimization. Rule2(𝑣, 𝑖,𝐶, ℓ) is applied when calculating the

modularity gains for each movement direction (line 24). For

clarity, we present the constraints of both variants simulta-

neously in the algorithm. Rule1(𝑣, 𝑖,𝐶, ℓ) for Bi-Probing(Gl)

is applied before attempting to insert into hashmaps (line

12), while Rule1(𝑣, 𝑖,𝐶, ℓ) for Bi-Probing(Lo) is applied at

the final stage of the movement operation (line 28).

6 Memory-Efficient Graph Coarsening

The peak memory overhead during the graph coarsening

phase of the Louvain method is a critical factor limiting its

ability to handle large-scale graphs. The challenge in design-

ing a low-memory-overhead multi-GPU graph coarsening

algorithm lies in reducing unnecessary storage consump-

tion of the coarsened graph while balancing the size of the

coarsened graph across multiple GPUs. To address this, MG-

𝛼GCD proposes a two-phase graph coarsening approach,

consisting of symbolic and numeric phases.

Algorithm 2: Symbolic Graph Coarsening

input :Bin (bin), graph offset array (offset), graph edge

array (edge), renumbered community id of

vertices (comIdRenum).

output :Community Degree (comDegree)

1 foreach community in bin.comms do

2 foreach vertex in community.vertices do

3 lb← nvshmem_g(offset[vertex.id]);

4 rb← nvshmem_g(offset[vertex.id + 1]);

5 for e← lb to rb do

6 neiId ← nvshmem_g(edge[e]);

7 key← comIdRenum[neiId];

8 hash← (key ∗ SCAL) % tableSize;

9 while true do

10 old_key← atomicCAS(table + hash, -1,

key);

11 if old_key = -1 or old_key = key then

12 if old_key = -1 then

13 degree← degree + 1;

14 break;

15 comDegree[community.id]← degree;

Symbolic Graph Coarsening. In this phase, we calcu-

late the number of vertices and edges in the coarsened graph

without calculating the edge values. First, we gather the com-

munity ID information from all GPUs, allocating space equal

to the number of vertices in the original graph to store the

global community IDs. Subsequently, based on this informa-

tion, we calculate the number of non-empty communities

and renumber the community IDs, where non-empty com-

munities will serve as the new vertices in the coarsened

graph. Following this, we compute the sum of the degrees

of the vertices within non-empty communities and use this

information to assess the workload on processing units and

the upper limit of scratchpad memory requirements when
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calculating the number of adjacent communities for the non-

empty communities in subsequent steps. Finally, we employ

a hashing strategy to compute the number of adjacent com-

munities for the non-empty communities (Algorithm 2).

While hashing performs efficiently in shared memory,

its performance degrades significantly in the slower global

memory. Real-world graphs often follow power-law distri-

butions, posing additional challenges for load balancing and

shared memory utilization during graph coarsening. To ad-

dress these issues, we introduce a binning strategy similar

to the Bi-Probing heuristic. Once the number of adjacent

communities is determined, we compute the offset array in

CSR format using a prefix sum.

Numeric Graph Coarsening. In this phase, we collapse

the edges between vertices in adjacent non-empty commu-

nities to form new edges between the vertices of the coars-

ened graph. As the exact number of edges and memory

requirements are known, the load can be balanced more

precisely for the numeric phase. Based on the edge count

information output from the previous phase, we partition the

coarsened graph across the GPUs while balancing the num-

ber of edges within each GPU. Next, we employ a method

similar to that in Algorithm 2 to calculate the edge and edge

weight arrays. Note that the scale of the coarsened graph is

typically much smaller than that of the original graph, thus,

compared to allocating temporary space equal to the origi-

nal graph size for storing the coarsened graph, this strategy

significantly reduces peak storage overhead.

We highlights that, due to the proposed two-phase graph

coarsening approach, MG-𝛼GCD requires graph partitioning

only during the first outer modularity optimization itera-

tion. In subsequent iterations, partitioning is seamlessly inte-

grated into the graph coarsening process. This significantly

reduces the volume of CPU-GPU data transfers.

7 Evaluation

7.1 Platforms & Tools

Our major platform consists of four NVIDIA “Volta” V100-

SXM2-32G GPUs (with 80 Streaming Multiprocessors), dual

Intel(R) Xeon(R) E5-2698 v4 CPUs (with 40 cores, 2.20 GHz),

and 512 GB of DDR4 memory. The GPUs are intercon-

nected via NVLinks. We compile and link MG-𝛼GCD using

CUDA (v11.8), OpenMPI (v4.1.5), NVSHMEM (v2.9.0), CMake

(v3.26.3), and GNU Make (v4.4.1) with the -O3 compilation

option. The code is available at https://github.com/darius513/

MG-alphaGCD.

7.2 Dataset

For real world graphs, we selected 12 graphs from the SuiteS-

parse Matrix Collection[7] as listed in Table 1. These graphs

provide a reasonable variation in the graph characteristics

with vertices ranging from 0.54M to 118.14M, edges ranging

from 28.51M to 3.61B, max degree ranging from 9 to 3.00M,

standard deviation of degreee (SD) ranging from 0.93 to 59.66,

and 6 categories. Additionally, we also include graphs that

are considered hard-to-cluster, as they yield low modularity

in other studies.

Graphs num.V num.E Max SD

Road networks:
road_usa 23.95M 57.71M 9 0.93

Citation networks:
coPapersDBLP 0.54M 30.49M 3299 59.66

Wikipedia networks:
wiki-topcats 1.79M 28.51M 3907 30.43

Social networks:
ljournal-2008 5.36M 79.02M 2469 15.24

com-LiveJournal 4.00M 69.36M 14815 17.41

twitter7 41.65M 1.47B 2997469 35.45

com-Friendster 65.61M 3.61B 5214 8.98

Web networks:
uk-2002 18.52M 298.11M 2450 13.03

webbase-2001 118.14M 1.02B 3841 9.49

it-2004 41.29M 1.15B 9964 28.19

sk-2005 50.64M 1.95B 12870 38.40

random networks:
rgg_n_2_24_s0 16.78M 265.11M 40 15.50

Table 1: Realworld graphs used in our evaluation.“Max”

represents the maximum degree of vertices, while“SD”

represents the standard deviation of degrees.

7.3 Baselines

We compareMG-𝛼GCDwith state-of-the-art multi-GPU Lou-

vain methods and the CPU-based Louvain method Grappolo.

In all benchmarks, we set the modularity convergence thresh-

old to 1.0E-06.

(1) cuGraph[25] is a widely-used graph analytics li-

brary by NVIDIA, which includes a state-of-the-art multi-

GPU Louvain implementation. As part of the RAPIDS GPU-

accelerated platform, it leverages Dask[30] to enable multi-

GPU operations and extensively utilizes parallel libraries like

Thrust[2] to accelerate the algorithm.

(2) nido[6] is a batched multi-GPU Louvain algorithm that

transfers graph data in batches from host to device, enabling

the processing of large graphs that exceed the total GPU

memory capacity. nido performs graph coarsening entirely

on the CPU. In our experiments, we set the batch size to 8.

(3) Grappolo[19] is a well-known CPU-based parallel

Louvain method that introduces the minimum label, color-

ing, and the vertex following heuristic to address Louvain

parallelization challenges.

https://github.com/darius513/MG-alphaGCD
https://github.com/darius513/MG-alphaGCD


MG-𝛼GCD: Accelerating Graph Community Detection on Multi-GPU Platforms ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

1.
00
x

0.
00

1.
00
x1.

99
x

0.
00

1.
63
x

2.
12
x

0.
00 2.

57
x

2.
19
x

0.
00 4.
40
x

0

3000

6000

9000

12000

nido cuGraph MG-𝛼GCD

sk-2005

1GPU 2GPU

3GPU 4GPU

1.
00
x

0.
00 1.
00
x

1.
24
x

0.
00 1.
21
x

1.
73
x

1.
00
x

1.
76
x

1.
74
x

1.
31
x

2.
40
x

0

4000

8000

12000

16000

nido cuGraph MG-𝛼GCD

twitter7

1GPU 2GPU
3GPU 4GPU

1.
00
x

1.
00
x

1.
00
x

1.
40
x

1.
03
x

1.
33
x1.
14
x

0.
78
x

1.
92
x0.
80
x

0.
99
x

2.
36
x

0

200

400

600

nido cuGraph MG-𝛼GCD

road_usa

1GPU 2GPU
3GPU 4GPU

1.
00
x

0.
00 1.

00
x

1.
68
x

0.
00 1.
78
x

7.
68
x

1.
00
x

2.
55
x

7.
76
x

1.
32
x

3.
31
x

0

500

1000

1500

2000

nido cuGraph MG-𝛼GCD

it-2004

1GPU 2GPU
3GPU 4GPU

1.
00
x

1.
00
x

1.
00
x

0.
94
x 0.
63
x

1.
48
x

0.
61
x 0.

35
x

1.
90
x

0.
33
x

0.
49
x

2.
34
x

0

50

100

150

200

nido cuGraph MG-𝛼GCD

coPapersDBLP

1GPU 2GPU

3GPU 4GPU

1.
00
x 1.
00
x

1.
00
x0.
83
x 0.
81
x

1.
23
x

0.
54
x 0.
64
x

1.
48
x

0.
34
x

0.
75
x

1.
74
x

0

100

200

300

nido cuGraph MG-𝛼GCD

wiki-topcats

1GPU 2GPU

3GPU 4GPU

1.
00
x

1.
00
x

1.
00
x

1.
07
x

0.
99
x

1.
04
x

0.
95
x

0.
67
x

1.
76
x

0.
69
x

0.
95
x

2.
80
x

0

100

200

300

400

nido cuGraph MG-𝛼GCD

com-LiveJournal

1GPU 2GPU
3GPU 4GPU

1.
00
x

1.
00
x

1.
00
x

1.
79
x

1.
48
x

1.
76
x

2.
01
x 1.
27
x

2.
59
x

1.
68
x

1.
67
x

3.
42
x

0

200

400

600

nido cuGraph MG-𝛼GCD

rgg_n_2_24_s0

1GPU 2GPU
3GPU 4GPU

1.
00
x

0.
00 1.
00
x

1.
61
x

1.
00
x

1.
69
x8.
01
x

1.
16
x

2.
44
x9.
58
x 1.
58
x

3.
25
x

0

1000

2000

3000

4000

5000

nido cuGraph MG-𝛼GCD

webbase-2001

1GPU 2GPU
3GPU 4GPU

1.
00
x

1.
00
x

1.
00
x

1.
78
x

1.
12
x

1.
68
x

2.
04
x

1.
33
x

2.
39
x

1.
88
x 1.
68
x

2.
98
x

0

200

400

600

800

nido cuGraph MG-𝛼GCD

uk-2002

1GPU 2GPU
3GPU 4GPU

1.
00
x

1.
00
x

1.
00
x1.

46
x

0.
65
x

1.
28
x

1.
04
x 0.
83
x

2.
05
x

0.
81
x

1.
03
x

2.
88
x

0

100

200

300

400

nido cuGraph MG-𝛼GCD

ljournal-2008

1GPU 2GPU
3GPU 4GPU

1.
00
x

00
.0

0.
00

2.
56
x

0.
00

1.
00
x

2.
84
x

0.
00

1.
73
x

3.
01
x

0.
00

2.
60
x

0

10000

20000

30000

40000

nido cuGraph MG-𝛼GCD

com-Friendster

1GPU 2GPU
3GPU 4GPU

Ru
nt

im
e 
(m

s)

Figure 4: The runtime per iteration and scalability ofMG-𝛼GCDand the comparedmulti-GPULouvainmethods. The

y-axis shows the runtime, while the x-axis shows different methods. Different colors represent GPU configurations

ranging from 1 to 4 GPUs. The number on each bar indicates the speedup of the method using 𝑖 GPUs compared to

its performance with 1 GPU. The ‘0.00’ indicates that the method fails to run at this GPU configuration due to

out-of-memory.

7.4 Performance Comparison over Existing

Work

7.4.1 Total Runtime. We first study the differences in total

runtime among MG-𝛼GCD, Grappolo, nido, and cuGraph.

The results in Table 2 reveal that MG-𝛼GCD achieves signifi-

cant overall performance advantages over the other methods,

with an average speedup (geometric mean) of 34.60x, 30.75x,

and 11.31x compared to Grappolo, nido, and cuGraph, re-

spectively. The maximum speedups reach 137.82x, 818.82x,

and 44.15x, respectively.

Notably, MG-𝛼GCD demonstrates substantial acceleration

on ‘road_usa’ and ‘coPapersDBLP’. The ‘road_usa’ graph

exhibits the lowest SD among all tested graphs, while ‘co-

PapersDBLP’ has the highest SD, underscoring MG-𝛼GCD’s

consistent performance across graphs with varying power-

law degree distribution. Additionally, MG-𝛼GCD achieves

superior acceleration on datasets with low modularity, such

as ‘ljournal-2008’, ‘com-LiveJournal’, ‘wiki-topcats’, and ‘co-

PapersDBLP’.

Furthermore, MG-𝛼GCD shows considerably acceleration

on large-scale graphs. As for ‘sk-2005’ and ‘com-Friendster’,

MG-𝛼GCD completes the computation in the shortest time,

while cuGraph fails to run due to out-of-memory. We do

note that for ‘twitter7’, the speedup is considerably smaller

compared to other large-scale graphs, primarily due to the

exceptionally high maximum degree, which leads to severe

load imbalance and GPU shared memory pressure. Address-

ing this bottleneck through new programming paradigms,

such as edge-centric approaches, represents a promising di-

rection for future work.

7.4.2 Modularity. This subsection evaluates the clustering

quality of MG-𝛼GCD. Table 2 summarizes the results, with

modularity serving as the evaluation metric. MG-𝛼GCD

demonstrates superior performance compared to the other

three methods across the majority of datasets. Notably, for

graphs that are challenging to cluster, MG-𝛼GCD outper-

forms the second-best method, the CPU-based Grappolo.

Even for datasets where MG-𝛼GCD’s clustering quality is

lower than that of Grappolo, such as ‘com-LiveJournal’ and

‘it-2004’, the modularity achieved by MG-𝛼GCD remain com-

parable.

To the best of our knowledge, MG-𝛼GCD is the only GPU-

based Louvain method that surpasses Grappolo in clustering

quality. In contrast, other approaches often trade off cluster-

ing quality for higher execution efficiency. MG-𝛼GCD incor-

porates only the Bi-Probing heuristic described in Section 5

and does not include other optimizations used in previous

studies, such as vertex pruning or modifying initial tolerance.

7.4.3 Scalability. To further compare the execution effi-

ciency and scalability of the algorithms, we evaluated the

average iteration time during the first phase for each method

under 1 to 4 GPU configurations, as well as the relative

speedup compared to their respective single-GPU configura-

tions.

As shown in Figure 4, MG-𝛼GCD demonstrates signifi-

cantly lower average iteration times across all GPU configura-

tions compared to other methods. Specifically, in the 4-GPU

configuration, MG-𝛼GCD achieved an average speedup of

14.43x and 12.58x over nido and cuGraph, respectively, with

maximum speedups of 68.47x and 42.70x.

Scalability is significantly influenced by the power-law de-

gree distribution of graphs. However, as illustrated in Figure

4, MG-𝛼GCD consistently demonstrates excellent scalabil-

ity across graphs of varying sizes, power-law distributions,

vertex degrees, and complexities. It also exhibits a promis-

ing scalability trend, with relative speedup increasing as the

number of GPUs increases, suggesting the potential for even
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Graphs

Grappolo nido cuGraph MG-𝛼GCD (ours) MG-𝛼GCD vs cuGraph

Speedup

Q T Q T Q T Q T

uk-2002 0.991968 109.02 0.916482 248.95 0.989517 19.16 0.992201 1.30 14.74

webbase-2001 0.986583 213.31 0.821354 1692.72 0.982278 69.47 0.987285 14.15 4.91

rgg_n_2_24_s0 0.992610 82.95 0.841726 96.75 0.992967 14.77 0.993041 0.87 16.98

it-2004 0.993613 250.06 0.86308 259.68 0.975552 42.47 0.991942 7.24 5.87

road_usa 0.997919 45.48 0.592551 270.21 0.997978 14.57 0.997996 0.33 44.15

twitter7 0.510858 2131.31 0.389706 265.05 0.486518 86.56 0.526612 57.22 1.51

ljournal-2008 0.761307 304.62 0.721337 51.39 0.754148 38.83 0.767071 3.23 12.02

com-LiveJournal 0.747204 100.82 0.746983 21.75 0.746374 33.78 0.746273 2.84 11.89

wiki-topcats 0.638614 14.79 0.606305 10.96 0.638289 21.13 0.642356 1.76 12.01

coPapersDBLP 0.857962 10.55 0.851131 4.74 0.85923 4.55 0.860105 0.11 41.36

sk-2005 0.983659 216.56 0.904583 1137.29 NA NA 0.984680 66.27 NA

com-Friendster 0.618186 5426.54 0.638332 1276.53 NA NA 0.641119 346.96 NA

Table 2: Performance comparison of total runtime and modularity. Bold text indicates the lowest runtime and the

highest modularity. In this comparison, MG-𝛼GCD employs the local Bi-Probing heuristic, and all multi-GPU

methods are run on a 4-GPU configuration. The ‘NA’ indicates that the method fails to run due to out-of-memory.

Here, Q = modularity, T = time(s).
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Figure 5: The impact of pipeline and GPU Interconnect on scalability.

greater speedup with additional GPUs. In contrast, both nido

and cuGraph exhibit a phenomenon where increasing the

number of GPUs results in longer runtimes, particularly in

cases where communication dominates execution time, such

as ‘ljournal-2008’, ‘com-LiveJournal’, ‘wiki-topcats’, ‘coPa-

persDBLP’, ‘rgg_n_2_24_s0’, and ‘road_usa’.

We also observe that nido achieved significant relative

speedup on ‘webbase-2001’, ‘it-2004’, and ‘com-Friendster’.

This is primarily due to its exceptionally low efficiency on a

single GPU. Additionally, in these cases, nido’s performance

no longer scales with the increase in GPU count after reach-

ing a certain threshold, which aligns with the observations

reported in its original paper. The batch strategy allows nido

to process ‘com-Friendster’ on a single GPU, but it also con-

strains its performance on a single GPU.

7.5 Effect of Pipeline and GPU Interconnect

In this subsection, we analyze the impact of the pipeline and

GPU interconnect on the scalability of MG-𝛼GCD. The base-

line refers to the irregular atomic implementation described

in Section 4.2.1, the pipeline denotes the pipeline optimiza-

tion detailed in Section 4.2.2. The suffix -P indicates the PCIe

interconnect, whereas -N indicates the NVLink interconnect.

The results are shown in Figure 5.

Our observations indicate that Pipeline-N demonstrates su-

perior scalability compared to Baseline-N across all test cases,

with its advantages being particularly significant for graphs

with high degrees and skewness, such as ‘com-LiveJournal’,

‘twitter7’, and ‘sk-2005’. The Pipeline-N achieves robust scal-

ability on these graphs, whereas the Baseline-N suffers from

performance degradation as the number of GPUs increases.
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Figure 6: Comparison of modularity evolution. The abrupt increase in modularity corresponds to transitions

between phases.

This suggests that the pipeline design effectively mitigates

inter-GPU communication overheads, thereby enhancing

MG-𝛼GCD’s scalability. These findings underscore the im-

portance of algorithm-level communication-hiding strategies

in achieving scalable performance.

To further analyze the impact of GPU interconnect on

scalability, we conducted experiments on a platform com-

prising four V100-32G GPUs interconnected via PCIe. We

observed that Pipeline-N exhibits better scalability than

Pipeline-P, primarily because NVLink offers higher commu-

nication bandwidth and lower latency compared to PCIe.

Moreover, NVLink achieves relatively better bandwidth effi-

ciency with smaller payload sizes compared to PCIe. Given

its higher bandwidth efficiency, low latency, and high band-

width, NVLink is more suitable for applications with small

access patterns.

In summary, both algorithm-level communication opti-

mization and the effective use of high-speed GPU intercon-

nect technologies are essential for achieving excellent scala-

bility in MG-𝛼GCD.

7.6 Impact of Bi-Probing Heuristic

Next, we explore the impact of Bi-Probing heuristic on algo-

rithm convergence and clustering quality. Here: (1) Baseline

refers to the approach without any optimizations addressing

the challenge of Louvain parallelization. (2) Bi-Probing(Lo)

refers to the local bidirectional probing variant outlined in

Section 5.2.1. (3) Bi-Probing(Gl) refers to the global bidirec-

tional probing variant described in Section 5.2.2.

Figure 6 illustrates the modularity evolution for the three

methods. While the baseline converges more quickly, the

clustering quality it achieves is significantly inferior to that

of Bi-Probing proposed in this study.

We further compare the two variants. In terms of mod-

ularity, Bi-Probing(Gl) consistently produces results that

are, on average, 1.5% lower than those of Bi-Probing(Lo).

Additionally, we observe that the choice of variant signifi-

cantly impacts modularity convergence efficiency. The dif-

ference in the timing of the abrupt modularity increase in-

dicates that Bi-Probing(Gl) evolves through phases more

rapidly compared to Bi-Probing(Lo), and reaches the final

phase faster. For hard-to-cluster graphs, such as ‘twitter7,’ as

well as in most other cases, Bi-Probing(Gl) converges faster

than Bi-Probing(Lo). This implies that on most datasets, em-

ploying Bi-Probing(Gl) allows MG-𝛼GCD to achieve even

greater speedups compared to the results shown in Table

2. A different behavior is observed on a few datasets, such

as ‘rgg_n_2_24_s0’ and ‘road_usa’, where Bi-Probing(Gl)

requires more iterations. The road networks are known to

behave diffrently for a large variety of problems, due to the

lack of small world characteristic[29]. Similarly, random net-

works, being synthetic, also lack this characteristic.

7.7 Comparison of Peak Space Cost

Figure 7 shows the comparison of the peak memory con-

sumption between MG-𝛼GCD and two other multi-GPU

Louvain methods, nido, and cuGraph, under a 4-GPU config-

uration. The maximum peak memory cost of MG-𝛼GCD is

reduced by 41.7% compared to cuGraph and by 36.1% com-

pared to nido. Besides, MG-𝛼GCD consistently demonstrates

lower peak memory consumption than cuGraph across all

datasets. Specifically, for ‘uk-2002’, ‘webbase-2001’, ‘twitter7’,

and ‘rgg_n_2_24_s0’, MG-𝛼GCD reduces peak memory cost

by 69.86%, 58.37%, 56.90%, and 50.19%, respectively, compared

to cuGraph. Additionally, since nido does not perform graph

coarsening on the GPU and introduces a batch strategy to re-

duce the storage overhead of graph structure information, its

peak memory consumption is lower than both cuGraph and

MG-𝛼GCD on relatively smaller graphs, such as ‘road_usa’.

However, for larger graphs, MG-𝛼GCD achieves significantly

lower peak memory consumption than nido, due to precise

GPU memory management.
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Figure 7: Peak memory cost of MG-𝛼GCD and the com-

pared multi-GPU Louvain methods.

7.8 Runtime Breakdown

Figure 8 shows the runtime breakdown of MG-𝛼GCD. It

includes the first step (vertex movement), the second step

(community information update), the third step (modularity

calculation) of modularity optimization, as well as the sym-

bolic and numeric phases of graph coarsening. As shown,

modularity optimization accounts for an average (arithmetic

mean) of 89.2% of the total runtime. In contrast, graph coars-

ening only takes up an average of 10.8% of the total runtime.

Specifically, the first, second, and third steps of modularity

optimization and the symbolic and numeric phases of graph

coarsening contribute to the total runtime by an average of

50.5%, 8.0%, 30.7%, 3.4%, and 7.4%, respectively.
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Figure 8: The runtime breakdown of MG-𝛼GCD.

8 Discussion

Graph Community Detection and Graph Partitioning.

Although we have primarily focused on the Louvain method,

our communication-hiding and memory-efficiency optimiza-

tions/designs could also be extended to other graph commu-

nity detection algorithms, such as Leiden, as well as multi-

level graph partitioning algorithms, including the multilevel

recursive-bisection and multilevel k-way algorithms used in

METIS[15]. These design optimizations offer crucial insights

for adapting these applications to multi-GPU platforms.

9 Related Work

In previous research, significant efforts have been made to

parallelize the serial Louvain method. Grappolo[19] employs

heuristic techniques such as graph coloring, minimum label-

ing, and vertex following. In a single GPU context, Naim et

al.[20] improved load balancing across processing units by

enabling parallel access to individual edges. Cheong et al.[5]

proposed a hierarchical Louvain method, in which the origi-

nal graph is partitioned into several disjoint subgraphs, and

the edges between the subgraphs are temporarily removed.

With the increasing computational power of multi-GPU

platforms, multi-GPU Louvain methods have also emerged.

Chou et al.[6] introduced a batch-based multi-GPU Lou-

vain method, nido, which divides vertex and edge infor-

mation into batches and processes them sequentially using

a bulk synchronization parallel model. NVIDIA’s cuGraph

library[25], one of the most advanced GPU-based graph anal-

ysis libraries, extends multi-GPU capabilities through Dask

and offers a highly efficient Louvain method. cuGraph adopts

a tiling-like technique to coarsen the graph. However, cu-

Graph converts the CSR format into a vertex-pair format,

which increases memory requirement. Sattar et al.[31] ex-

tended the Louvain algorithm to a distributed multi-GPU

environment. Although they employed CUDA-Aware MPI

to reduce the latency of data transfers between GPUs, their

scalability is still limited by the following factors: (1) bidirec-

tional and aggregation communication initiated by the CPU;

(2) the graph coarsening process is performed by the CPU.

10 Conclusion

This paper presents MG-𝛼GCD, a novel algorithm de-

sign and implementation that accelerates the Louvain

method on multi-GPU platforms. MG-𝛼GCD incorporates a

computation-communication pipeline that effectively hides

inter-GPU communication. Additionally, MG-𝛼GCD in-

cludes a bidirectional probing heuristic that enhances ef-

ficiency while providing better clustering solutions. Finally,

MG-𝛼GCD design a two-phase graph coarsening method

that significantly reduces memory usage. Experimental

results demonstrate that MG-𝛼GCD achieves substantial

speedups in efficiency and scalability compared to state-of-

the-art methods, while also conserving considerable amounts

of memory.
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