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Abstract
Current work leverages data caching and operator execution
accelerations to reduce the Online Analytical Processing
(OLAP) query execution time on the disaggregated archi-
tecture with computation, cache, GPU, and storage clusters.
However, their optimizations rely heavily on the OLAP en-
gine, thus have defects of passive data fetching and inte-
grated operator executions, leading to poor OLAP query
execution performance. To resolve the above problems, we
propose the ORION manager to take over the data and op-
erator management capabilities from the OLAP engine for
reducing OLAP query execution time. ORION consists of
∗Zhixin Tong and Jiuchen Shi contributed equally to this work.
†Quan Chen is the corresponding author.
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a proactive cache manager and a fine-grained operator man-
ager. The cache manager reorders the data batch processing
based on the cache availability and asynchronously fetches
uncached data. The operator manager separates the inte-
grated pushdown operators into executable functions, to
enable properly scheduling on CPU or GPU nodes and al-
locating fine-grained resources. Experimental results show
that ORION reduces the OLAP query execution time by 42.2%
on average compared to state-of-the-art works.
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1 Introduction
Online Analytical Processing (OLAP) refers to large-scale
data analysis in areas like financial reporting, sales analy-
sis, and customer behavior studies [8, 10]. Unlike Online
Transaction Processing (OLTP) with frequent data writes
and updates, OLAP emphasizes periodic data reading and
analysis (e.g. daily) that often take minutes to hours [49, 60].
The OLAP queries are typically performed on the disaggre-
gated architecture in which the hardware resource can be
divided into four layers, including computation, cache with
CPUs, GPU for acceleration, and storage [30, 38, 41, 62]. This
architecture allows data to be stored remotely using cloud
services like Amazon S3 [46] and Alibaba Cloud OSS [11].
OLAP engines such as Apache Spark [19], Presto [22], and
Trino [23] divide large-scale data into batches and use CPUs
and GPUs for parallel processing with the support of the
disaggregated architecture.
Figure 1 shows the OLAP query execution workflow in

the disaggregated architecture, including two main stages:
data fetching and operator execution. For a query, the OLAP
engine will first fetch a batch of required data from remote
storage. Then, the data batch is processed with multi-staged
operators that are packaged into a single process on the local
servers. The above process is repeated until all data batches
are processed. Several optimization techniques have been
proposed to accelerate the OLAP query execution in both
the data fetching and operator execution stages.
For the data fetching, since fetching a large amount of

data from remote storage can slow down the OLAP query
execution, caching methods like Alluxio deploy a cache clus-
ter close to the OLAP engine to enhance data reuse and
reduce data transmissions [25, 54]. For the operator execu-
tion, current OLAP engines [19, 22] allocate CPU cores for
operators integrated in one process, and some of them (like
Spark-RAPIDS [38]) offload all operators to GPUs to accel-
erate executions. Although speeding up the data fetching
and operator executions through caching and GPUs, the
above methods still have poor efficiency due to their strong
dependence on the OLAP engine’s management capabilities.
As for the data fetching aspect, some data batches avail-

able in the cache may be fetched repeatedly since the OLAP
engine determines the data batch processing order without
awareness of cache availability. Moreover, according to the
OLAP engine’s management, a data batch is only fetched
after the previous data batch is processed, leading to synchro-
nized data fetching and processing with long data waiting
time. As for the operator execution aspect, our investigations
show that some operators are IO-intensive while others are
compute-intensive (Section 6.3.1). However, current OLAP
engines integrate operators into a single process, and al-
locating CPU cores to them can result in some operators
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Figure 1: The execution workflow of the OLAP query.

obtaining insufficient resources. Moreover, when offloading
all integrated operators to GPUs, the GPU memory can be
overwhelmed due to IO-intensive operators loading a large
amount of data into GPU memory while their performance
on GPUs is similar to CPUs.

Even if combining all the above optimizations, it still can-
not achieve optimal OLAP query execution performance.
This is because it does not address the fact that the above
optimizations are still reliant on the centralized management
of the OLAP engine. Our investigations show that combining
them still increases the query execution time by 46.5% on
average compared to the Oracle execution time (i.e., elimi-
nating data fetching time and using excessive GPUs for the
operator to achieve the ideal execution performance).

To address above problems, we choose to separate the data
and operator management responsibilities from the OLAP
engine by introducing a dedicated manager. Since real-world
big data analysis often requires multiple OLAP engines si-
multaneously to address the complexity of tasks [15, 57],
this separation eliminates the invasive modifications when
adapting to various engines. In this way, the OLAP engine
remains in the computation cluster, but our manager, who de-
termines data fetching and operator executions, is deployed
in the cache layer to conveniently process hot data batches.
With the above design choices, more flexible data batch

fetching and operator scheduling strategies can be utilized
to speed up OLAP query executions. We summarize three
key design guidelines for efficient OLAP query executions.
Firstly, strategies are required to reduce repeated data

fetching and mitigate data processing blockage. Secondly,
an execution mode is required to separate the integrated
operators to allow the respective scheduling and resource
allocation for each operator. Lastly, policies are required to
schedule proper operators to GPUs and allocate just-enough
resources for different operators, to avoid GPUmemory over-
loading and improve OLAP query execution performance.
We therefore propose the ORION manager to optimize

the OLAP query execution time1. ORION is positioned as an
acceleration plugin for universal OLAP engines with little

1ORION is open-sourced via https://github.com/Tongzhixin/ORION.

https://github.com/Tongzhixin/ORION
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intrusions. It comprises a proactive cache manager and a fine-
grained operator manager. The cache manager reorders the
data batch processing orders based on data availability in the
cache, increasing the cache hit rate and reducing repeated
data fetching. Moreover, it fetches the required data batches
along with operator executions asynchronously to reduce
the data waiting time. The operator manager has a function
builder and a function scheduler. The function builder utilizes
a novel execution mode to separate the integrated pushdown
operators into executable functions. The function scheduler
dispatches the functions to cache nodes with CPU cores or
GPU nodes, considering the functions’ diverse hardware
resource demands. It also gradually searches just-enough
resources for functions during the query execution process.

This paper makes three contributions.
• Comprehensive analysis of inefficiencies in cur-
rent OLAP query executions. The analysis identifies
the need for a dedicated manager to take over the data
and operator management and corresponding opti-
mization challenges.
• Proactive reordering for data batch processing
based on their availability in the cache. This re-
ordering strategy eliminates repeated data fetching
and unnecessary data waiting time during the OLAP
query execution.
• Separating integrated operators into independent
functions for flexible scheduling. This enables the
scheduling of proper operators to GPUs and allocates
optimal resources for operators to speed up operator
execution performance.

We have evaluated ORION on our testbed cluster with
4 servers and 2 NVIDIA A40 GPUs, and also deploy it for
our real business on our production cluster with 600 servers
and 100 GPUs. Experimental results show that ORION aver-
agely reduces the query execution time by 42.2% and 60.8%
compared to state-of-the-arts for testbed and production
environments, respectively.

2 Related Work
Caching: Executing OLAP queries in a disaggregated stor-
age architecture involves significant data movement [9]. To
address this problem, Alluxio [5, 54] and JuiceFS [25] serve
as cache components between the OLAP engine and remote
storage, fetching the data required by the OLAP engine from
remote storage to cache. Rubix [26] and Ceph [12] imple-
mented similar functions but designed different optimiza-
tions on the cache. Moreover, FPDB [61, 62] utilizes the local
cache for hot data batches to reduce data movement. How-
ever, these works processed data batches according to the
OLAP engine’s decision, leading to repeated data fetching
and low hit rates with limited cache size.

Operator Executions: Current OLAP engines primar-
ily execute operators using CPU cores within a single pro-
cess, such as Executors in Spark [19]. Some other works like
columnar execution [1] and SIMD-based optimizations [27]
have improved the execution performance with CPU cores
for OLAP queries. For example, DuckDB [43] leveraged an
efficient in-memory, single-process design for faster query
execution. However, these works allocated CPU cores for
operators integrated in a single process, in which some op-
erators may not be allocated enough resources, leading to
low query execution performance.

GPUs are utilized to accelerate operator executions due to
their parallel capabilities [24, 28, 35]. RRAPIDS [38] was
developed on top of Spark to accelerate operator execu-
tions [19]. Ghive [32, 33] and OAs [64] offered acceleration
libraries for Apache Hive [56] and Pandas [34], respectively.
Some other works like Crystal and HeavyDB [6, 7, 31, 39,
42, 48] focused on enhancing data processing capabilities
in DBMS but operate similar to RAPIDS. Moreover, some
previous works [59, 65] observed that large-scale data com-
putations could lead to insufficient GPU memory. Lee et
al. [29] found that data analysis with IO-intensive operators
is not suited for GPUs. The above works offload all operators
integrated in a single process onto GPUs, which can result
in GPU memory exhausted and poor OLAP query execution.

Computation Pushdown: It is a common idea for near-
data processing [58]. PushdownDB [63] pushed down oper-
ators using S3 select SparkNDP [44] employed SQLite [13]
to execute the SQL in remote storage. However, current re-
mote storage [11, 46, 47] like S3 and OSS [11] only supported
limited types of pushdown operators. These approaches re-
lied on the computational capabilities of third-party remote
storage, which only supported limited pushdown operators.
Thus, the OLAP query execution performance was poor.

3 Background and Motivation
In this section, we first introduce the background of execut-
ing the OLAP query on the disaggregated architecture, and
then investigate the inefficiency of current methods.

3.1 OLAP Query Execution on the
Disaggregated Architecture

Current datacenters have evolved into disaggregated com-
pute and storage clusters to enable flexible resource scal-
ing [30, 38, 41, 50, 62]. To reduce the data fetching between
compute and storage, the caching cluster (with large mem-
ory and CPU cores) is also deployed for caching data lo-
cally. Moreover, some works [7, 59, 65] integrated high-
performance GPUs to accelerate the executions. Under this
architecture, data caching and operator execution accelera-
tions are utilized, but have poor query execution efficiency.
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Figure 2: Optimizations for theOLAPquery executions.

Firstly, current caching methods like Alluxio [5] passively
fetch data from remote storage according to the OLAP engine,
leading to data waiting and repeated data fetching. As an
example in Figure 2(a), the data “Batch1” is only fetched
when the Spark engine determines to process it, resulting in
waiting for the data ( 1○- 4○). Moreover, based on the batch
processing order of Spark, the already cached “Batch2” may
be eliminated to cache the new data “Batch1” for processing
when the cache space is insufficient ( 5○- 6○). It will be re-
fetched when the Spark engine starts to execute it after ( 7○-
8○), which enlarges the query execution time.
Secondly, as shown in Figure 2(b), current OLAP engines

integrate the operators into a single process, which allocates
computing resources as a whole without considering the
operators’ different resource demands ( 1○). Moreover, some
OLAP engines utilized GPU accelerated frameworks (e.g.,
Spark-RAPDIS) to speed up the OLAP operator executions [3,
38]. However, these frameworks offload all operators on
GPUs, but the limited GPU memory can be overloaded due
to IO-intensive operators loading a large amount of data.
This results in reduced execution performance in turn ( 2○).

Some other works [45, 46, 62, 63] also pushdown opera-
tors directly to the third-party remote storage for executions
( 3○ in Figure 2(b)). This is implemented by using the specific
modules that handle data transfer between compute and stor-
age and determine pushdown operators, e.g., the Connector
in Presto [21] and DataSource in Spark [20]. However, they
only support limited formats (e.g., CSV) and pushdown oper-
ator types, as they rely highly on remote storage capabilities.

3.2 The Long Query Execution Time
In this section, we investigate the inefficiencies of current
solutions for OLAP query executions.

The investigations are conducted by using the top-5 queries
(marked as Q1, Q5, Q17, Q18, and Q21) with the typical op-
erators and long execution time in TPC-H [14], which is
popular in evaluating the performance of OLAP engine [16].

Table 1: Experiment specifications

Specifications

Hardware

Compute layer: Intel(R) Xeon(R) CPU E5-2630 v4 @
2.20GHz, 32 CPU cores, 48GB Memory
Cache layer: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz,
8 CPU cores, 64GB Memory
GPU layer: NVIDIA A40, CUDA Version: 12.2, PCI-e 4.0,
24GB Memory ×2
Storage layer: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz,
4 CPU cores, 8 GB Memory, 1Gbps network bandwidth

Software
Ubuntu 20.04.6 LTS with kernel 5.15.0-88-generic x86_64
spark-3.3.1, presto-server-0.287, rapids-4-spark_2.12-24.06.0
Alluxio-2.9.0, MinIO-RELEASE.2024-06-22T05-26-45Z
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Figure 3: The execution time of OLAP queries with
Spark-Pushdown, Spark-Alluxio, Spark-RAPIDS, FPDB,
and Spark-All normalized to Oracle.

As a supplement, we evaluate three queries widely used in fi-
nancial stock analysis in our production datacenters (marked
as D1, D2, and D3), containing the distinct operators that are
not present in TPC-H queries. We provide the unified TPC-H
benchmark dataset with a scale factor of 100 for all queries
fairly. The file remote storage format used is parquet [18],
and each file size is 256MB. Table 1 summarizes the hardware
and software configurations. We evaluate the query execu-
tion time on the OLAP engine Spark with state-of-the-arts.

Firstly,We deploy the S3-compatible object storeMinIO [36]
to form Spark-Pushdown with S3-Select. Secondly, we deploy
the cache method Alluxio [5] with Spark to form Spark-
Alluxio. Thirdly, we utilize one GPU card with the GPU
accelerating framework RAPIDS [38] for Spark to form Spark-
RAPIDS. Moreover, we deploy the state-of-the-art work FPDB,
which leverages a local cache to store hot data batches and
integrates pushdown computation to offload operators to
S3-Select [61]. Since it is infeasible to pushdown operators
to both remote storage and GPUs, there is no solution that
combines caching, pushdown, and GPU acceleration at the
same time. Thus, we enumerate the execution time of differ-
ent operators in FPDB (executed on CPU cores) and RAPIDS
(executed on GPUs), and sum up the minimum values for
each operator to be the query execution time as Spark-All.

We further construct an Oracle by caching all data directly
in memory and using 2 GPU cards for operator executions,
completely eliminating data fetching time and achieving the
most ideal execution performance. Figure 3 shows the query
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execution time of different methods normalized to Oracle.
We find that Spark-All has the best performance compared
to others since it combines all the optimization methods
for OLAP query executions. However, we also observe that
all the query execution time of Spark-All is bigger than 1X,
with the increase from 1.2X to 1.9X. The query execution
inefficiency will be magnified on our real-world business
queries with 400X larger data scale than TPC-H, which we
will show their results in Section 8.8.

The OLAP query execution inefficiency of above works is
caused by relying on the centric data and operator manage-
ment capabilities of the OLAP engine.

3.3 Diving into the Underlying Reasons
Our investigation shows the long OLAP query execution
time is caused by two major aspects: passive data processing
and fetching and integrated scheduling for operators.

3.3.1 Passive Data Processing and Fetching. The first reason
is the passive data fetching of current cache methods like
Alluxio, based on the decision of the OLAP engine.

Figure 4 shows the actual data fetching amount from the
remote storage and the minimum amount for executing the
eight queries when the cache cluster is full with 80% of the
required data of each query. The minimum amount of each
query represents the least data amount required in execution.
We can observe that the fetched data amountwith the Alluxio
method is higher than theminimum amount in all the queries,
with an average increase of 2.3X. This is because the data
batch processing order is determined by the OLAP engine,
without flexible reordering based on the data availability in
the cache. In this mode, cache miss occurs frequently and
results in repeated fetching of the data available in the cache.
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Figure 6: The execution time of three operators in Q1
under varying CPU core allocation.
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Moreover, as illustrated in Figure 5, for fetching the re-
quired data of a query from the remote storage, the cache
cluster passively fetch the data batch required after the OLAP
engine prepares to process it. In this mode, the data fetch-
ing and operator execution occur in a synchronized manner,
which leads to an increase in the total query execution time.

3.3.2 Integrated Scheduling for Operators. In the operator
execution stage, since some operators are compute-intensive
while others are IO-intensive, allocating resources for all
operators integrated into a single process can lead to OLAP
query execution inefficiency.
On the one hand, current OLAP engines [19, 22] typi-

cally allocate CPU cores for integrated operators in a single
process. Figure 6 shows the execution time of the Scan, Pro-
jection, and Groupby operators in Q1 when we gradually
increase their CPU cores. We observe that execution time
decreases as CPU cores increase, and no longer decreases
after reaching certain thresholds, which vary as 1.5, 4.5, and
6.2 CPU cores, respectively. These results demonstrate that
different operators have varying resource demands. When
allocating resources for them with the same resources in
a process, some operators may be over-provisioned while
others are allocated insufficiently, resulting in decreased ex-
ecution performance.

On the other hand, current GPU-accelerated methods like
Spark-RAPIDS [38] schedule all integrated operators onto
GPUs. Figure 7 compares the query execution time of Spark
with RAPIDS and Spark without RAPIDS. RAPIDS performs
worse for Q5, Q17, and Q18, while it offloads all operators
onto GPUs. Looking into the GPU resource usage, the GPU
utilization of RAPIDS is only 9.8% on average, while the GPU
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memory is fully utilized. This is because some IO-intensive
OLAP operators (e.g., select and filter), which do not demand
many CUDA cores, exhaust GPU memory due to the large
amount of data loaded. To further test our investigation, we
enhance RAPIDS by utilizing twice the number of GPU cards
as RAPIDS-2X, which increases the available GPU memory.
As shown in Figure 7, Q5, Q17, and Q18 indeed achieve
shorter query execution time compared to RAPIDS.
The above observations suggest that we should separate

the integrated operators into functions and then decide their
respective scheduling to GPUs or CPUs, as well as the allo-
cated computing resources for each.

4 ORION Methodology
In this section, we first introduce the design choices and
guidelines of ORION, and then explain the system overview
of ORION.

4.1 Design Choices and Guidelines
The inefficiency of the OLAP query execution optimizations
stems from the tight integration of data and operator man-
agement capabilities with the OLAP engine. Therefore, We
introduce a well-designed manager to take over both the data
fetching and operator execution management capabilities,
allowing flexible batch processing and execution manage-
ment. Based on Section 3.3, we summarize three key design
guidelines for efficient OLAP query executions.
ORION should proactively re-order data batch pro-

cessing based on data cache availability, and fetch data
during query executions asynchronously. The passive
data processing and fetching based on the OLAP engine can
cause repeated data fetching and synchronous data waiting.
A fine-grained execution mode is required to sepa-

rate operators. This is because the integrated execution
mode for pushdown operators cannot enable fine-grained
scheduling and resource allocation, leading to poor perfor-
mance and resource inefficiency.

Efficient strategies are required to allocate just-enough
CPU cores to different operators and schedule proper
operators to GPUs. Allocating CPU cores to integrated
operators may lead to some operators cannot obtain enough
resources, and offloading all of them to GPUs may exhaust
the limited GPU memory, which decreases OLAP query exe-
cution performance.

4.2 System Overview
Figure 8 shows the overview of ORION that comprises a
proactive cache manager and a fine-grained operator manager.
The cache manager reorders the data batch processing order
based on availability in cache, to increase the cache hit and
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Figure 8: Design overview of ORION.

reduce repeated data fetching, and asynchronously fetches
the required data batches.
The operator manager consists of two components: the

function builder and the function scheduler. The function
builder utilizes a fine-grained execution mode to package
the pushdown operators into functions, which enables each
operator to be fine-grained allocated resources. The function
scheduler dispatches functions to CPU or GPU nodes and
allocates just-enough resources for them.

For the cache manager, the key point is to proactively pro-
cess and fetch data batches without relying on the decisions
of the OLAP engine. We address this by integrating the data
reordering and asynchronous fetching strategies. The re-
ordering strategy reorders the data batch processing orders
based on their cache availability, to avoid repeated fetch-
ing and enhance data reuse during query executions (Sec-
tion 5.2). The fetching strategy fetches the not fully cached
data batches along with operator executions in an asynchro-
nous mode to reduce data waiting time (Section 5.3).

For the operator manager, since the pushdown operators
of the OLAP engine are integrated, we propose a function
builder to package each pushdown operator into an indepen-
dent function. The packaged functions can flexibly adapt to
various data formats (e.g., Parquet and CSV), support oper-
ators on both CPU and GPU hardware, and communicate
efficiently with each other through pipes (Section 6.2). More-
over, the function scheduler assigns functions to either CPU
or GPU nodes and gradually adjusts just-enough CPU cores
for optimal function execution. The challenging part here
is to offload proper functions to GPUs and efficiently adjust
resources for different functions (Section 6.3).

Specifically, for executing an OLAP query, ORION works
as follows. 1) ORION obtains the pushdown operators and
required data batches from the daemon process, which is
an extension of the OLAP engine’s Connector. 2) The cache
manager’s data reordering strategy sorts the required data
batches based on their cache availability and marks them
as Cached, PartCached, and UnCached. If the cache cluster
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is not full, the asynchronous fetching strategy fetches the
PartCached and UnCached data batches from remote storage.
3) Meanwhile, the operator manager utilizes the function
builder to package operators into independent functions.
The function scheduler determines the scheduling locations
(CPU or GPU) of these functions and allocates each function
with initial computing resources. 4) The function scheduler
executes the functions with data batches according to the
order determined by the cache manager. It also continuously
adjusts the just-enough resources for functions with different
resource demands, and reschedules functions to CPU nodes
when the limited GPU memory exhausts. 5) After each data
batch is processed by all functions, the results are returned
to the OLAP engine to conduct subsequent computations.

It is worth noting that ORION does not determine to push
downwhich operators. This is the responsibility of the OLAP
engine, and ORION focuses on efficiently managing the push-
down operators on different hardware resources.

5 Proactive Cache Management
Based on our investigations in Section 3.3.1, we propose the
proactive cache manager in this section. We first introduce
the design choices of caching. Then, we propose data re-
ordering and asynchronous fetching strategies to address
the problems of passive data processing and fetching.

5.1 Caching Choices
Cached Data and How to Know It in Advance. The cache
manager fetches the source data needed for the computa-
tion of the OLAP query, rather than the intermediate data
during the query execution process. Moreover, along with
the pushdown operators, the OLAP engine’s Connector [20]
also provides the data information. This information ensures
that the cache manager knows where the data is and what
format and partition it is.

Caching Format. For the data format of the OLAP query
in the cache, most of the existing methods (e.g., Alluxio) [5,
25] fetch data from remote storage and store them in the
cache with the granularity of files. In this mode, since the
query may only need several columns of a file, redundant
data will be fetched, which wastes the cache and occupies
considerable network bandwidth. Therefore, we only fetch
the required columns of the OLAP query and convert the
different data formats (e.g., Parquet and CSV) into columnar
format to cache. Since the number of rows in the file is not
fixed, we further split each data column into batches, each
with 1M rows. Each batch is uniquely identified by the file
name, column name, and start and end rows.

Cache Replacement. For each data batch, the cache man-
ager also marks a label to represent whether it has been pro-
cessed by the function scheduler (Section 6.3). When the new

Data Reordering
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S3

Data InformationInput

Cached PartCached UnCachedSort

Cache Manager

Function
Scheduler

Figure 9: The design of the cache manager.

data columns need to be fetched from the remote storage
and the memory space of the cache layer is insufficient, we
employ the Least Recently Used (LRU) policy to prioritize
the eviction of processed data batches. If no batches can be
eliminated, all cached batches are queued for processing,
and the manager will stop fetching until some batches are
processed. After the query execution is completed, all data
batches in the cache will be marked back as unprocessed.

5.2 Data Batch Processing Reordering
To address the problem of passive data processing, the key
idea of this strategy is to give priority to processing the
batches that already exist entirely in the cache.
When the cache manager receives the data information

with the file list and the column set used by this query, it
first searches for all the existing columns in the cache. The
cached columns that identify the same file, the same start row
number, and the same end row number are assembled into
data batches. These batches can be executed by operators in
any order without incurring context-switching overhead, as
they follow the same workflow and ensure correct results.
Moreover, the cache manager does not account for the re-
ordering of intermediate data since it stays localized within
the operator pipeline.
As shown in Figure 9, the cache manager classifies the

data batches into “Cached”, “PartCached”, and “UnCached”
groups, indicating that all, some, or none of the required
columns are in the cache, respectively. For each group, the
data batches are also ordered according to the total cached
column numbers. The data batches in the “Cached” groups
are prioritized to process by the function scheduler (Sec-
tion 6.3). In this way, when the space is insufficient to cache
all data, we can increase the hit rate and reduce the repetitive
data fetching, further enhancing the performance.

5.3 Asynchronous Fetching
When none or part of the required data is in the cache, we
need to fetch the missing data batches from remote storage.
As shown in Figure 9, for “PartCached” and “UnCached”

groups, we design to fetch the required data columns in



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Zhixin Tong, Jiuchen Shi, et al.

an asynchronous manner, independent of the batch execu-
tion order decided by the OLAP engine. During the data
fetching, we design to fetch the missing columns first for
the data batches in the “PartCached” group and then for
the “UnCached”. The data fetching order follows the data
batch processing order within each group as determined by
the data reordering strategy. These methods quickly con-
vert more data batches to the “Cached” state, reducing data
waiting during operator executions.

6 Fine-grained Operator Management
Based on the investigations presented in Sections 3.3.2, we
propose a fine-grained operator manager in this section. We
first introduce the brief overall workflow of the operator
manager and then delve deeper into the internals of both the
function builder and the function scheduler.

6.1 Overall Workflow
We first introduce the overall workflow of the OLAP query
execution with the operator manager.
Input of the Operator Manager: The input of the op-

erator manager is the logical pushdown operators from the
OLAP engine at the computation layer. Specifically, upon
a query’s arrival, the OLAP engine parses and optimizes it,
and pushdown operators are dispatched to the connector
(e.g., DataSource v2 in Spark [20]).

Query Execution at Cache and GPU Clusters: The
function builder first converts the logical pushdown opera-
tors into executable processing functions based on the oper-
ator characteristics. The function scheduler then schedules
the functions onto different cache and GPU nodes and exe-
cutes them with data batches according to the optimal order
determined by the cache manager. During the query execu-
tion, it reschedules data batches back to cache nodes when
GPU memory exceeds capacity, and adjusts the resource
allocation dynamically.

Output of the Operator Manager: After a data batch is
scheduled and executed by the operator manager, the result
batchwill be returned to the OLAP engine at the computation
layer, which will continue the subsequent computations.

6.2 Function Builder
The key to addressing the integrated resource allocation for
operators is to break them down into independent functions
and execute them using a new computation mode.
As shown in Figure 10, to obtain independent functions,

we first implement a function breakdown library named
FuncOpLib to convert the operators into executable functions
(①). The FuncOpLib is a set of implementations of logical
operators. Each “FuncOp” is an internal implementation of all
or a part of the operator as amore fine-grained execution step.

Scan Scan(Filter)
Filter

Count
Distinct

Distinct

Count

FuncOpLib
Scan
Filter

FunctionsOperators

1
2

3

Integrated IndependentImplementations

Pipe

Count
CountDistinct
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Projection Projection

CPU GPU
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Pipe

Figure 10: The design of the function builder.

The FuncOpLib also includes the different implementations
on different hardware resources (i.e., CPU andGPU) to enable
the functions to run on them.
When separating the operators, the Scan and Filter can

be combined into a function to achieve better execution effi-
ciency in some conditions (②). For example, when processing
data in a columnar storage format, combining scan and filter
takes advantage of the fast random read capability of colum-
nar storage [2]. Moreover, if an operator includes multiple
steps to run step by step in the execution process, we will
break it down into more fine-grained functions, consisting of
each step executed. For example, the CountDistinct operator
is divided into two sequential functions, i.e., Distinct and
Count, because only after knowing all deduplicated data can
the correct result be counted (③).
After the above steps, the integrated operators that are

executed in a process are built into independent executable
functions with independent processes. Another issue is that
these functions are now executed under the synchronized
mode, i.e., a function waits for its downstream functions
to finish execution. Therefore, we design a pipe between
every two functions. The data completed by the previous
function is placed in the pipe, and the current function polls
the pipe to access the data and process it. In the producer-
consumer model, each function execution is independent
of the previous function. The above methods provide an
architectural possibility for allocating fine-grained resources
for different functions.

6.3 Function Scheduler
For the function scheduler, we first discuss about offload-
ing appropriate functions to GPUs to speed up the OLAP
query execution, and then introduce the efficient function
scheduling on the cache nodes with CPU cores.

6.3.1 Function Offloading onto GPUs. In Section 3.3.2, we
find that not all queries can be accelerated by GPUs in all
cases. We conduct profiling for different functions (or oper-
ators) to determine which functions to offload to the GPU.
We use Spark and RAPIDS as cases without GPU usage and
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Figure 11: Function execution time on CPUs or GPUs.

with full GPU usage, and mark them as Non-RAPIDS and
RAPIDS, respectively. We test a total of these operators, in-
cluding Scan, Filter, Projection, Join, Groupby, and Aggregate
(Sum and Distinct), which are common operators in TPC-H
and real-world queries. The queries used here only contain
one operation to ensure fairness. The configurations in the
test are still the same as in Section 3.2.
Figure 11 shows the different execution time for each

operator in Non-RAPIDS and RAPIDS, including the data
transfer time via PCIe, and the speedup compared with the
case of Non-GPU. We find that Aggregate (Sum and Distinct)
and Groupby operators show substantial performance im-
provements when executed on GPUs. Compared with Non-
RAPIDS, they have 71.7%, 52.1%, and 48.0% performance
improvements, respectively. The Scan, Filter, and Projection
operators, however, only increase the performance by 6.4%,
12.3%, and 16.2%, respectively.

This also aligns with our motivation in Section 3.3.2. In de-
tail, the IO-intensive operators often execute early in queries
with a large amount of data that can bring the GPU mem-
ory overhead, while compute-intensive operators are better
suited for GPU execution. Based on these observations, the
function scheduler is designed to selectively offload specific
functions to GPUs, including Aggregate and Groupby, ensur-
ing that these functions to benefit from GPU accelerations.
The functions on GPUs will share the GPU resources.

For a function that requires GPUs, the intermediate data
processed by its previous functions will be sent to the GPU
node with the most remaining GPU memory for executions.
The intermediate data between functions on the CPU and
GPU is also passed through the pipe (Section 6.2). More-
over, if the GPU memory of all GPU nodes is insufficient,
the subsequent to-be-processed batches on the GPU will be
rescheduled for execution on cache nodes with CPU cores
until the GPU nodes have sufficient memory again.

6.3.2 Function Scheduling on CPUs. We further consider
the function scheduling on the cache nodes that utilize the
CPU cores. According to Section 3.3.2, different functions
require varying amounts of computing resources. By fully
utilizing the separatedmode described in Section 6.2, the goal
is to adjust just-enough resources (CPU cores) for functions
during the query execution.

Algorithm 1 Just-enough Resource Adjustment
1: Tolerance← 0.5, Rate← 0.1
2: function_list← list of functions in execution order
3: for function in function_list do
4: pipe← get_pipe(previous_function, function)
5: num_batches← pipe.size()
6: function_concurrency← function.concurrency()
7: load_factor← (num_batches / function_concurrency) -1
8: if (load_factor + Tolerance) < 0 then
9: function.reduce_resources(Rate)
10: else if (load_factor - Tolerance) > 0 then
11: function.increase_resources(Rate)
12: else
13: continue
14: Return isFinish

The initial resource allocation for functions is not always
optimal, and adjusting just-enough resources gradually for
functions requires obtaining the data pending amount and
target concurrency. With the integrated function mode, the
data generated by the previous function will be placed in
the pipe, and the amount of batches serves as one input for
resource adjustment. Another input is the user-defined tar-
get concurrency in the OLAP engine [40], which typically
defaults to the allocated CPU number for use. For each func-
tion, the dynamic resource adjustment can be formulated as
minimizing the difference between its data pending amount
and target concurrency (i.e., size of the pipe).

We employ Algorithm 1 to achieve the optimization goal
above. First, we initialize the adjustment 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 and the
adjustment 𝑅𝑎𝑡𝑒 , and then retrieve the list of functions to be
adjusted (lines 1-2). Similar to otherworks [51, 52],𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
is proposed to prevent overly frequent resource adjustments,
ensuring adjustments are only made within the tolerance
range. For each function, we get the number of batches in the
pipe and obtain the function’s concurrency, then calculate
the load factor as the ratio of the difference between them
(lines 4-7). If the load factor plus𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is less than 0, we
decrease the function’s resources at the percent of𝑅𝑎𝑡𝑒 . If the
load factor minus 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 is greater than 0, we increase
the function’s resources. Otherwise, no adjustment is made.
After all functions are processed, this round of resource ad-
justment is finished. This resource adjustment interval is set
as 2 seconds in our experiments.

7 Implementation of ORION
In this section, we describe how ORION is implemented into
the OLAP engine in our real production environment.

7.1 Data and Operator Acquisition
Current OLAP engines provide the connector API (e.g., Data-
Source v2 in Spark [20] and Connector in Presto [21]) for
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connecting the computation and storage clusters. The OLAP
engine offers registration of handlers for logical pushdown
operators [21]. When the OLAP engine generates an execu-
tion plan, the registered operators are captured and handed
over to the connector for processing.
By utilizing the capability of the connector API, ORION

cleverly runs a daemon process for sending pushdown op-
erators and data requirements from the OLAP connector
to ORION as logical operators and data information. To en-
able ORION to separate from the daemon process on the
OLAP side, we utilize the open-source Substrait [53], which
provides a well-defined and cross-language specification for
data computing operations. In this way, ORION can focus
solely on parsing and processing the Substrait language, and
support all common operators.

With the above implementations, ORION provides unified
acceleration capabilities for OLAP engines without making
intrusive modifications. Moreover, ORION can adapt to vari-
ous types of storage clusters, e.g., AWS S3 and HDFS.

7.2 Cache and Function Execution
With the delegated management capabilities from the OLAP
engine, ORION uses Ray’s in-memory object store [37] as
the infrastructure of the distributed cache layer, which is
also responsible for synchronization among functions intra-
server and inter-server. Moreover, taking full control of the
data in ORION, data formats like CSV and Parquet are also
converted to Apache Arrow format [17] and stored in a com-
pressed column-based way, to retrieve data faster and save
space. When functions start, the retrieved data is converted
into batches using zero-copy techniques of Arrow and sent
to the function scheduler.

For the function execution, ORION encapsulates the basic
API of cuDF [3] to build functions that are easier to call on
GPUs. By leveraging C++-compiled libraries from Apache
Arrow, ORION inherits the performance advantages of com-
piled code and utilizes CPU SIMD instructions to achieve
parallelism, enhancing performance compared to traditional
JVM-based methods. Moreover, ORION utilizes Ray’s Ac-
tor mechanism [55], resource management, and powerful
scaling performance to implement function scheduling and
resource adjustment across clusters. This ensures a consis-
tent runtime environment across nodes in the cluster. ORION
also leverages the NodeAffinityStrategy to effectively isolate
the GPU cluster from the cache cluster, ensuring that only
specific functions are scheduled to the GPUs.

8 Evaluation of ORION
In this section, we first evaluate ORION on query execution
time and resource usage efficiency. Then, we investigate the
effectiveness of each individual module and the scalability.

8.1 Evaluation Setup
Table 1 already shows the configurations of the experiment
platform. We use the TPC-H benchmark with a scale factor
of 100. The file storage format is parquet, and each file size
is 256MB. The top five time-consuming queries with typical
operators from the TPC-H are used: Q1, Q5, Q17, Q18, and
Q21. As a supplement, we evaluate three queries widely-
used in financial stock analysis in our production datacenters
(marked as D1, D2, and D3) detailed in Section 3.2.

We compare ORION to several real-world solutions and
academicworks on twowidely-usedOLAP engines Spark [19]
and Presto [22], respectively. For real-world solutions, we
adopt the S3 Select pushdown method (marked as Push-
down) [44, 63], the caching method Alluxio [54], and the
GPU-accelerated method RAPIDS [38] deployed with the
Spark. For the academic work, we adopt the state-of-the-art
system FPDB [62]. FPDB combines remote pushdown with
local caching, and we implement it by integrating the Arrow
storage format into the computation layer along with S3
Select. Furthermore, we follow the approach used to build
Spark-All in Section 3.2, which combines FPDB and RAPIDS
to construct Presto-All. It is equivalent to FPDB, since the
Presto engine does not support RAPIDS.
We use the end-to-end execution time as the metric to

measure the performance for the OLAP query. We also use
the CPU core time, cache space, GPU utilization, and GPU
memory as the resource efficiency comparison metrics.

8.2 Reducing Query Execution Time
In this subsection, we evaluate the query execution time
of ORION and the baseline works on the OLAP engines
Spark and Presto. For each query, we first test under no data
available in the cache as the “Cold” case. Then, we test it
again as the normal cached case while setting the capacity
of the cache cluster to 80% of its required data.

Figure 12 shows the end-to-end query execution time with
ORION and baseline works on Spark and Presto engines.
Since both Pushdown and RAPIDS have no cache optimiza-
tions, the query execution time for the “Cold” and normal
cases is the same, resulting in only one type of legend in
Figure 12. We can observe that ORION achieves the shortest
execution time in all the cases.
As statistics, ORION respectively reduces the execution

time by 39.2%, 19.9%, 50.9%, 33.4% on average, compared to
Pushdown, RAPIDS, Alluxio, and FPDB in the “Cold” cases,
while 61.8%, 50.2%, 52.8%, and 42.2% on average in the nor-
mal cases for the Spark engine. Moreover, since the Presto
does not support GPU-accelerated frameworks [4], we only
compare ORION to the remaining baselines. ORION can re-
duce the query execution time by 43.4%, 48.6%, and 33.5%
on average compared to Pushdown, Alluxio, and FPDB in
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Figure 12: The query execution time with ORION and baselines normalized to Spark-All or Presto-All, respectively.
The mark “-Cold” represents the special case of the first time OLAP query execution with no cached data at all.
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Figure 14: The CPU core utilization during the execu-
tion process of Q1 with FPDB and ORION.

the “Cold” cases, respectively, while 63.1%, 50.8%, and 40.3%
in normal cases. ORION performs better in normal cached
scenarios since its data ordering strategy plays roles in effec-
tively increasing cache hit rate and reducing repeated data
fetching for queries with cached data.

We can also find that ORION outperforms Spark-All that
combines various optimizations, with an average execution
time decrease of 25.8%. This is because Spark-All remains
centered around the OLAP engine, which proves that simply
combining different optimizations cannot achieve an effi-
ciency similar to ORION. Presto-All is the same as FPDB, as
it does not support GPU accelerations.
Observing the results in-depth, ORION can reduce the

query execution time by 34.8% on average in the five queries
of TPC-H, while obviously reducing that more by 49.1% for
the three business queries on Spark, and Presto has similar
results. This is because more Groupby and Aggregate opera-
tors are deployed in these real-world business queries, which
can present more speedup when appropriately utilizing GPU
resources by ORION. Conversely, TPC-H uses more Filter
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Figure 15: The GPU memory and utilization during
execution process of Q1 under ORION and RAPIDS.

operators to filter data in advance, resulting in more reliance
on table joins rather than aggregate.

8.3 Diving into Execution Time Reduction
We use Spark in the normal cached cases as examples to an-
alyze why ORION has better performance than other works.
Figure 13 shows the total data fetching amount of all

queries under ORION and baseline works. We can observe
that ORION has the lowest data fetching amount, which is
reduced by 67.3%, 81.4%, and 25.2% compared to Pushdown,
Alluxio, FPDB, respectively. This is because ORION prior-
itizes processing the data batches that are available in the
cache, rather than fetching data in the order requested by
the OLAP engine like baselines. In this way, the repeated
data fetching time is reduced. Moreover, when the query
data is not cached at all, ORION utilizes an asynchronous
data fetching strategy to make operator execution and data
fetching overlap, which can also reduce waiting time.

Figure 14 shows the CPU utilization during the execution
process of Q1 under the integrated resource allocation of
FPDB and function-based mode of ORION, respectively. We
observe that the function-based mode utilizes 39.2% fewer
CPU cores on average with less query execution time. The
average reduction of all the tested queries is 53.3%. This
proves that the separated resource allocation results in higher
resource utilization and better query execution performance.

Figure 15 shows the GPU memory usage and GPU utiliza-
tion in Q1 for ORION and RAPIDS. We first observe that
ORION completes the query execution earlier. Moreover,
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Figure 16: The cache space, CPU core hour, GPU utilization, and GPU memory usage with ORION and baselines.

ORION utilizes 48.6% on average of the GPU memory with
higher GPU utilization while RAPDIS used up almost all GPU
memory with significantly low GPU utilization of 11.4% on
average during execution. The average GPU memory reduc-
tion of all the tested queries is 60.4%. ORION only offloads
the compute-intensive operators (Groupby and Aggregate)
to GPU, which improves the computation efficiency. By con-
trast, RAPIDS offloads all operators to GPUs that fill up the
GPU memory, which reduces the data batch execution speed.

8.4 High Resource Efficiency
In this subsection, we evaluate ORION’s efficiency in re-
source usage during the query execution. The resources in-
clude the CPU and cache space usage in the cache cluster,
and the GPU utilization and memory usage in the GPU clus-
ter. The results shown here are from the Spark engine, and
the performance of the Presto is similar.

The left part of Figure 16 shows the cache space required
for each query of ORION and the baseline works with cache
optimizations. We observe that ORION can reduce the cache
space by 64.6% and 59.7% on average than Allixio and FPDB,
respectively. ORION uses the columnar format and only
caches the set of columns used in the query, which achieves
the most efficient cache usage. By contrast, Alluxio caches
files one-to-one to the cache, and uses more cache space.
FPDB uses arrow format without performing compression
operations, thus leading to more cache usage.
The middle part of Figure 16 shows the CPU core time

usage during the query execution under different cases with
the Spark engine. We observe that ORION can respectively
reduce the CPU core time by 56.2%, 65.2%, and 51.3% on
average, compared to Pushdown, Alluxio, and FPDB in the
uncached “Cold” cases, while that of 72.6%, 63.2%, and 51.3%
in the normal cached cases. Moreover, ORION slightly uti-
lizes more CPU cores than RAPIDS, with an average increase
of 11.9%. However, RAPIDS has a longer query execution
time than ORION and uses more expensive GPU memory.

The right part of Figure 16 shows the average GPU mem-
ory usage and GPU utilization for ORION and RAPIDS in
normal cached cases. The results in “Cold” cases are simi-
lar. The bars and curves represent GPU utilization and GPU
memory usage, respectively. We observe that ORION reduces
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Figure 17: The contribution of each module to execu-
tion time difference between ORION and Non-ORION.

the GPU memory usage by 61.3% on average than RAPIDS.
For the executions of all queries, RAPIDS will fill up the
GPU memory (total 48GB), but the GPU utilization is as
low as 12.1% on average. The GPUs are fully occupied but
not efficiently utilized for operator executions, leading to
performance decrease with low resource efficiency.

8.5 Effectiveness of Each Individual Module
In this subsection, we evaluate the contributions of OM-CPU,
OM-GPU, CM, and TECH, which refer to the function sched-
uling on CPUs of operator manager, the function offloading
onto GPUs, the cache manager, and technical implemen-
tations, respectively. The evaluation is conducted by con-
tinuously removing different modules from ORION until it
degenerates into Non-ORION.

Figure 17 shows the optimization time of each module. On
average, OM-CPU, OM-GPU, CM, and TECH can reduce the
query execution time by 14.3%, 14.2%, 24.3%, and 8.9%, respec-
tively, and a total of 61.8% compared to Non-ORION. In terms
of contributions to the overall optimization effect, they con-
tribute 23.2%, 23.0%, 39.4%, and 14.4%, respectively. We can
observe that the cache manager and operator manager play
the similar role (39.4% and 46.2%), while our technical imple-
mentations optimize for 14.4%. The contribution of TECH
is brought by using in-memory column-based data format,
which offers better caching and operator execution efficiency
compared to traditional JVM-based methods. The reduction
of data fetching amount and cache utilization are all con-
tributed by the proactive cache manager. Moreover, ORION’s
operator manager reduces CPU core and GPUmemory usage
by separating and fine-grained scheduling operators.
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Figure 18: The query execution time with ORION and
baseline works under different data scales.

Specially, OM-GPU plays a more important role in Q1,
Q18, D1, and D2. This is because these queries involve a
higher number of Groupby and Aggregate operations during
executions and can be significantly accelerated by the GPU.
Moreover, CM contributes more in Q21 and D2, as their data
scales are larger, and CM enables amore efficient reduction of
repeated data batch fetching and unnecessary data fetching.

8.6 The Impacts of Data Scale
To investigate the impact of the data scale, we modify the
scale value of the TPC-H benchmark from 20 to 200 to gen-
erate different data scales. We then evaluate the query exe-
cution time of Q1 for ORION and different baseline works.

Figure 18 shows the query execution time of ORION and
baseline works under the different data scales. The results
show that ORION has the best performance under all data
scales. As the data scale increases, ORION’s advantage over
other works also increases. For instance, the execution time
of Alluxio is 2.6X compared to ORION with the data scale of
20, while that of 8.5X with the scale of 200.
The reasons originate from two aspects. Firstly, with the

data scale increase, the cache manager of ORION can reduce
more data waiting and repeated fetching time than baseline
works with passive data management. Secondly, ORION can
fine-grained manage the hardware resources, which brings
better capabilities to process more data batches in parallel.

8.7 The Impacts of Cache Layer Size
In real-world scenarios, the cache cluster space may not
be abundant to cache all the required data. To evaluate the
impact of varying cache space sizes, we adjust the cache
space ranges from 10% of the total required data of the queries
to 100%, and then evaluate the execution time of Q1 for
ORION and different baseline works.
Figure 19 shows the execution time of Q1 with ORION

and baseline works on Spark under different cache space
percentages. We can observe that ORION has the best per-
formance under all cache space sizes. When the cache space
is sufficient with caching 100% of the required data, ORION
can reduce the query execution time by 70.9% and 61.1% com-
pared to Alluxio and FPDB, respectively. When the cache
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Figure 19: The execution time ofQ1withAlluxio, FPDB,
and ORION for Spark under different cache space sizes.

Table 2: Descriptions of our business queries

Query Query Description Main Operations

B1-B3 Evaluate certain characteristic data of
stocks in different conditions.

Scan, Filter, Projection,
Groupby, Aggregate

B4-B5 Filter by different conditions and remove
duplicate transaction information.

Scan, Filter, Distinct

B6-B7 Filter transaction records by special char-
acteristics, then aggregate, and sort.

Scan, Filter, Aggregate

B8 Retrieve transactions for certain period. Scan, Filter

B9-B10 Retrieve special items of user informa-
tion grouped by attributes and aggregate.

Scan, Filter, Aggregate,
Join

space is insufficient at 10%, ORION can also reduce the query
execution time by 69.2% and 56.1% correspondingly.

The results show that ORION is less affected by cache size
than others. This is because ORION can process data batches
based on data availability in the cache to reduce repeated
data fetching when the cache space becomes smaller.

8.8 Scalability Results in Production
ORION has also been deployed for our real-world business in
our production datacenters. In real-world scenarios, systems
often process data on a much larger scale with tens of billions
of records (up to 40TB data). The production cluster also has
a large scale with about 12,000 CPU cores, 3TB memory, and
100 GPU cards with each 8GB-16GB GPU memory. We se-
lect 10 of the most frequently used queries here, which have
different functionalities and different data scales. For com-
mercial confidentiality, we only describe the functionality of
each query, as shown in Table 2.
Figure 20 shows the achieved speedup after deploying

ORION compared to the performance before deployment
in different queries on our interval OLAP engine. ORION
achieves an average speedup of 2.6X on ten queries. The
results of production deployment are better or equal than
the query selected in the experiments in Section 8.2, because
the query in production deployment has more operators
suitable for GPU computation, while the data magnitude is
also larger. The highest and lowest speedup is achieved on
B2 and B8, respectively. This is because B2 uses the most
computation operators and also uses the largest data scale,
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Figure 20: The execution time for business queries with
ORION and Non-ORION on our interval OLAP engine.

which can leverage the most advantages when using ORION.
Meanwhile, B8 has the least operators with a small data scale.

8.9 Overhead of ORION
In our evaluations, the average overhead of the cache man-
ager is about 140ms for executing an OLAP query, which
includes 125ms for the data batch reordering strategy and
15ms for creating processes to fetch data asynchronously.
For the operator manager, the average overhead is 472ms,
which includes 420ms for the function builder to transform
operators into functions, and 52ms for function scheduling
and resource adjustment during the query execution.

Therefore, the total overhead for executing an OLAP query
is less than 650ms, which is negligible relative to the OLAP
query execution time of tens to hundreds of seconds.

9 Conclusion
In this paper, we propose the ORION manager to take over
the data and operator management capabilities from the
OLAP engine to reduce OLAP query execution time, un-
der the disaggregated computation, cache, GPU, and storage
clusters. ORION’s cache manager orchestrates data batch
processing orders and asynchronously fetches required data,
to avoid data waiting and repeated fetching during the query
execution. ORION’s operator manager includes a function
builder and a function scheduler. The function builder sepa-
rates the pushdown operators into independent functions.
Then, the function scheduler determines the function sched-
uling to CPUs or GPUs, and adjusts just-enough resources
for them, to enhance query execution performance. We have
implemented ORION, and the results show that, compared
to the state-of-the-art works, ORION can reduce the query
execution time by 42.2% on average.
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