
Efficient Server Consolidation through a balanced mix of
Transformer-based and Conventional Applications

Pablo Abad
Computer Engineering Group

Universidad de Cantabria
Santander, Spain
abadp@unican.es

Pablo Prieto
Computer Engineering Group

Universidad de Cantabria
Santander, Spain
prietop@unican.es

Valentin Puente
Computer Engineering Group

Universidad de Cantabria
Santander, Spain

vpuente@unican.es

Jose Angel Gregorio
Computer Engineering Group

Universidad de Cantabria
Santander, Spain

monaster@unican.es

Abstract
Although not optimal for Large Language Model (LLM) inference,
general-purpose processors remain a practical choice due to their
ubiquity and accessibility. This work explores strategies to maxi-
mize server utilization when incorporating such applications into
the workload mix. To do that, we conduct an exhaustive profiling
process to analyze hardware-software interactions, leading to two
key observations. First, we have validated and quantified the com-
mon intuitions regarding LLM execution, with a specific focus on
the microarchitecture’s backend. Second, we observe the relatively
low contention of LLMs and conventional applications (e.g., SPEC
CPU17) when running together. Inspired by these findings, we
explore whether combining applications of each type on a common
server, if properly balanced, could lead to a better system utiliza-
tion. Using both state-of-the-art server configurations and slightly
older systems, we demonstrate that executing LLMs on general-
purpose processors is feasible with minimal impact on co-located
applications and lead to a better overall server performance.

CCS Concepts
• Computer systems organization; • Architectures; • Parallel
architectures; • Single instruction, multiple data; • Comput-
ing methodologies; • Artificial intelligence; • Natural lan-
guage processing; • Multicore architectures;

Keywords
Large Language Model, Transformer, CPU, SIMD, Memory Hierar-
chy

ACM Reference Format:
Pablo Abad, Pablo Prieto, Valentin Puente, and Jose Angel Gregorio. 2025.
Efficient Server Consolidation through a balanced mix of Transformer-
based and Conventional Applications. In 2025 International Conference on

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICS ’25, Salt Lake City, UT, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1537-2/2025/06
https://doi.org/10.1145/3721145.3725751

Supercomputing (ICS ’25), June 08–11, 2025, Salt Lake City, UT, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3721145.3725751

1 Introduction
The current interest in generative AI stems mainly from the ex-
ceptional performance of transformer-based models [1] on tasks
such as text generation [2] or translation [3]. This success implies
that their adoption rate is substantial, from on-the-edge devices to
cloud computing. The common assumption is that specialized hard-
ware such as GPUs or even offload accelerators are the preferred
execution platform. Although this seems to be the case for model
training in the latter or inference in the former, the availability of
general-purpose resources in the cloud might lead us to question
whether there is a way around such a requirement. Given the mas-
sive cost and limited availability of current specialized hardware
[4], such a question is appealing. This is especially important if
such workloads can run with minimal disruption to traditional
workloads sharing the underlying hardware.

Many server-oriented CPUs available in the cloud already imple-
ment hardware features targeted at AI applications. For example,
recent generations of Intel®Xeon®Scalable processors include AVX-
512 ISA extensions [5] that implement both deep learning inference
(Fused Multiply-Add instruction for 8-bit multiplies and 32-bit ac-
cumulates) and training-oriented instructions (several instructions
to operate on the bfloat16 data type [6]).

Efficiency (hardware utilization) and quality of service (QoS) are
two key issues in a cloud environment. This relevance is confirmed
by the amount of research done on CMP resource sharing over the
last 20 years [7][8]. Some of these works have focused on the analy-
sis of application benchmarks to group them based on their features
(memory, CPU, disk) so that they can share resources minimizing
the number of conflicts to meet efficiency and QoS requirements
[9][10]. Guided by the relevance acquired by machine learning
applications, this type of exploration work has been extended to
AI workloads running on general-purpose processors [11] and the
impact of features such as simultaneous multithreading or core scal-
ability [10]. To date, most research has focused on non-generative
models for tasks such as recommendation or computer vision [12],
which have distinct characteristics from transformer-based archi-
tectures.

https://orcid.org/0000-0002-1262-1256
https://orcid.org/0000-0002-5818-1188
https://orcid.org/0000-0002-6904-3282
https://orcid.org/0000-0003-2214-303X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3721145.3725751
https://doi.org/10.1145/3721145.3725751


ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Pablo Abad et al.

Recently, driven by the growing importance of transformer-
based workloads, research interest has shifted to this area. Cur-
rently, most efficiency proposals target GPUs [13][14], which are a
priori the most common execution substrate. However, thanks to
the efforts of processor vendors to integrate AI acceleration mecha-
nisms into general-purpose CPUs, recent work shows that the latest
CPU models can compete with GPUs in inference tasks [15][16].

Through exhaustive profiling, we precisely identify how the
LLMs fail to utilize certain resources available in a general-purpose
processor. As a result, these workloads are unable to take full
advantage of ILP due to their specific behavior at the backend of
the core. In addition, we have also observed that due to their distinct
nature, LLM applications may experience reduced contention when
run alongside more conventional workloads, such as a statistically
relevant mix of applications from the SPEC CPU benchmarks [17]
[18]. We apply these findings to a real-world scenario and show that
an appropriate combination of workloads can improve processor
utilization, a critical factor for efficiency in cloud environments.
While the optimal mix depends on the server configuration, the
trend remains consistent. For example, our experimental evidence
suggests that even on slightly older systems where the core lacks AI-
focused features or memory bandwidth is constrained, combining
both workloads can still improve server utilization.

The main contributions of the paper are as follows:

• Precise identification of microarchitectural bottlenecks for
LLM inference using general-purpose CPUs.

• Extensive characterization of LLM memory behavior, high-
lighting the absolute lack of locality and the poor utilization
of cache hierarchy.

• Comprehensive evaluation of collision sources when LLM
inference runs alongside conventional applications, demon-
strating a non-intrusive behavior.

• Discussion of the potential benefits of allowing LLM infer-
ence to share execution resources, maximizing sever utiliza-
tion while considering the heterogeneous nature of cloud
resources.

2 LLM Profiling
LLMs are a class of applications characterized by distinctive features,
including the massive size of the working dataset (with models sig-
nificantly exceeding the typical assumptions underlying memory
hierarchy design) and a strong reliance on a narrow set of opera-
tions. As illustrated by the stack traces in Figure 1, profiling the
execution of some models reveals that the most frequently exe-
cuted code paths using some commonly used CPU frameworks,
(llama.cpp [19] and neuralspeed [16]) are highly concentrated. Each
colored box represents a code function, and its width is proportional
to the execution time spent on it. Functions in a particular row are
called by those in the row below, building the call hierarchy from
bottom to top. The majority of the execution time is spent within a
single or a few functions comprising a small number of lines of code.
As a specific example, llama.cpp and neuralspeed spend 98% of its
time in a single function (ggml_vec_dot_32 and ne_vec_dot_f32
respectively) for fp32-weight models and nearly 90% for quantized
ones. The dominant function has a simple structure, consisting of

Figure 1: Execution flamegraph with fp32 model: (a)
llama.cpp, (b) nspeed and Q4model: (c) llama.cpp, (d) nspeed.

an iterative loop with two loads and a few SIMD operations (FMA
+ dequantization if necessary).

Given this particular structure, conducting a detailed profiling
process is an essential first step in gaining a comprehensive un-
derstanding of the interaction between the workload and the CPU.
With the rapid evolution of modern processors and the growing
number of hardware features tailored for AI applications, it is easy
to overlook the inherent limitations imposed by design decisions
rooted in the behavior of conventional applications. In this section,
we aim to address this issue by quantifying the impact of certain
performance issues that are often vaguely referenced in the liter-
ature, highlighting their significance. We will conduct a detailed
analysis using a robust methodology to examine how the software
under test interacts with the conventional components of the CPU
microarchitecture.

2.1 Hardware & Software Stack
To draw valid conclusions, the set of LLM applications must be rep-
resentative, covering a wide range of use case scenarios. To achieve
this, we run several LLM models with different architectures, sizes,
and data types on two different frameworks targeting CPUs.

The first framework used, llama.cpp [19], is one of the most
widely adopted in the open-source community. Built on top of the
ggml tensor library [20], it supports a large number of models and
quantization techniques. Written in C/C++, it also includes support
for SIMD extensions on X86 and other architectures. We use a
second framework, neural speed [16], which inspired by llama.cpp
but highly optimized for quantized models running on Intel CPUs
with latest SIMD ISA extensions. In both cases, the software has



Server consolidation with LLM applications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 1: Summary of LLM models evaluated.

Model Size (gguf weight file)
Fp32 Fp16 Q8 Q4

TinyLlama [21] 4.1G 2.1G 1.1G 608M
Starcoder [22] 12G 5.7G 3.1G 1.7G
Llama2 [23] 26G 13G 6.7G 3.6G
Mistral [24] 27G 14G 7.2G 3.9G
Llama3 [25] 30G 15G 8G 4.4G
Gptneox [26] 77G 39G 21G 11G

been compiled to take advantage of all AVX512 family extensions
[5] available in the processor used for profiling.

A summary of the models used is given in Table 1., ranging
from 1 (TinyLlama) to 20 (gptneox) billion weights. File model size
information is provided for the different data types used. Most of
the relevant open-weight models are represented, such as the latest
Llama architectures, the mistral model, as well as starcoder or gpt-
neox. In terms of the data type used to store the model weights, we
use the two most common floating-point formats, single-precision
(fp32) and half-precision (fp16), as well as 8-bit and 4-bit integer
quantization formats. SIMD units can operate natively on floating-
point weights, but in the processor used, quantized weights, require
a dequantization step prior to operation.

All profiling experiments are run on a 5th generation Xeon Scal-
able Processor (4514 family), with a server configuration described
in Table III (test system 1). This processor, released in the third
quarter of 2024, includes Intel Deep Learning Boost technology [5]
that targets IA applications. In addition, the core provides useful
features for profiling, such as many hardware event counters and
parametrization of some microarchitecture features. MSRs can be
used to enable/disable SMT and hardware prefetching features, and
Resource Director technology [27] provides granular control over
L2, LLC and memory bandwidth allocated to each core (or group
of cores).

2.2 CPU Bottlenecks (ILP Limitation)
The starting point of our analysis must be the measurement of
the overall performance of LLM applications, with a special focus
on microarchitectural efficiency. To do so, we combine a raw per-
formance value, such as the tokens per second generated by each
model, with an Instruction Per Cycle (IPC) metric.

Figure 2 illustrates the prediction times for each of the LLM
model evaluated in the test system. As anticipated, both model size
and data type play a critical role in inference latencies. In terms of
model size, smaller models require fewer operations per predicted
token, while quantization reduces the memory footprint, enhancing
overall performance. When restricted to a single processor, 8 bil-
lion parameters models appear to be the upper limit for generating
tokens at human reading speed (∼5-10 tokens per second [28]) on
the test system. Running larger models requires multi-node execu-
tion to better exploit data parallelism or transitioning to quantized
models.

In terms of efficiency, Figure 3 shows the IPC obtained, with the
y-axis set to the maximum achievable on the test system, 6. As can

Figure 2: Inference performance for different models. To-
kens per second.

Figure 3: IPC achieved for inference process.

be seen, the token generation speed is achieved by under-utilizing
hardware resources, reaching only two instructions per cycle in the
best cases. In contrast to the performance metric, it is noteworthy
that these values are independent of model size, suggesting that
both large and small models appear to face similar limitations. In
this case, only data type seems to be relevant for the results. In
addition, it should be noted that the IPC improvement of quantized
models is not proportional to their performance gains. Therefore,
beyond synchronization instructions, IPC is not a reliable proxy
metric for performance. For example, llama2-1.1B improves its IPC
by 20X when moving from fp32 to q4 weights, but this increment
turns only in less than 3X raw performance improvement (Figure
3 vs. Figure 2). The dequantization process introduces additional
instructions that are efficiently handled by the backend, leading to
a significant increase in the IPC but a relatively smaller impact on
actual performance. On average, quantized models require three
times as many instructions to perform the same effective work.

The significant gap between the observed and maximum IPC
warrants further analysis to determine which parts of the microar-
chitecture are causing this behavior. Profiling methodologies, such
as top-down analysis [29], are helpful in this process. They orga-
nize hardware event counters in a hierarchical manner, helping to



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Pablo Abad et al.

Figure 4: Level 1 top-down profiling for LLM models.

map the processor pipeline and identify the contribution of each
component to the performance loss. In this work we make use of
pmu-tools [30], a collection of CLI tools and libraries that imple-
ment this methodology on top of Linux perf [31]. At its most basic
level, this hierarchy divides performance into five main categories,
described as follows:

• Frontend Bound (FEND): fraction of the pipeline stalls origi-
nated during the process of instruction fetching and decod-
ing. Mainly related to cache instruction misses, or decoding
contention.

• Bad Speculation (BADS): performance stalls caused bywrong
speculation decisions, that require a processor state restora-
tion process. Branch miss-predictions are the main contri-
butions.

• Backend Bound (BEND): The stalls in this category are re-
lated to the inability to complete an operation, caused by the
lack of any operand (Memory Bound) or the lack of available
functional units (Core Bound).

• Retiring (RET): this category represents retired instructions.
It does not represent stalls, but real performance, correspond-
ing to the IPC performance metric.

As the number of levels of the analysis increases, each part of
the pipeline is profiled in more detail, splitting the microarchitec-
ture into more specific components, as we will see in the Memory
Hierarchy evaluation. Figure 4 shows the LLMs results for the
top-down categories described in the previous paragraph. As can
be seen, the nature of these applications results in a significant
backend penalty. While the frontend components (including fetch,
decode and branch prediction) appear to work properly, being the
processor backend the culprit for the poor performance observed.
In particular, the memory hierarchy is the main contributor to
execution stalls for floating-point datatypes, regardless of model
size and datatype width. As the weight size decreases (quantized
data types), the impact of functional units on performance becomes
more relevant. However, the poor memory hierarchy behavior re-
mains the dominant bottleneck in most cases. Only for the models
running on the NSpeed framework, with the smallest weight size,
both core and memory have a similar impact.

Table 2: Functional unit organization at core backend.

Integer FP/Vec Load/Store
P0 ALU, LEA, Shift,

JMP
FMA, ALU, Shift, fpDIV

P1 ALU, LEA, Mul,
iDIV

FMA, ALU, Shift, Shuffle,
FADD

P2 AGU,
Load

P3 AGU,
Load

P4 Store
Data

P5 ALU, LEA, MulHi FMA512, ALU, AMX,
Shuffle, FADD

P6 ALU, LEA, Shift,
JMP

P7 AGU,
STA

P8 AGU,
STA

P9 Store
Data

P10 AGU,
Load

P11 ALU, LEA

The constraints imposed by the available functional units be-
come apparent when we combine the code profiling of Section I
with the port usage analysis in Figure 5. In this graph, the y-axis
represents the fraction of instructions issued to each execution port
(the evaluated core implements a large number of functional units
with a port-based organization for scheduling, shown in TABLE
II). As can be seen, 90% of the instructions are scheduled to SIMD
(P0, P1 and P5) and load ports (P2, P3 and P10). As mentioned in
the code profiling at the beginning of Section II, this instruction
mix corresponds to the FMA operation loop on large vectors, so
in a general-purpose architecture, core limitations in this part of
the backend are going to be highly dependent on the number of
concurrent FMA operations supported by the processor.

Focusing on the memory hierarchy, spanning from the L1 cache
to the memory controller, as the main bottleneck, the next step is to
refine the top-down analysis for more detail on these components.
Figure 6 shows the contribution of each level of the hierarchy to the
performance degradation. Each data series in the graph is described
in Intel’s documentation as the fraction of cycles that the CPU was
stalled at each level. These results indicate that the primary bottle-
neck lies in the distant levels of the hierarchy (both the last-level
cache and the memory controller). For LLM models with weights
stored in memory using a floating-point format, main memory
accesses are the predominant factor contributing to performance
degradation. For quantized models, the number of weights loaded
per memory access increases, slightly alleviating the pressure on
the memory controller. At this stage, the performance bottleneck



Server consolidation with LLM applications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 5: Port utilization (fraction of total instructions).

Figure 6: Memory Bound. Fraction of requests responded at
each cache level.

partially shifts to the cache. However, it should be noted that the
behavior is highly dependent on the execution framework. For in-
stance, in models executed with NSpeed, memory controller issues
remain dominant in all cases.

The increasing proportion of load stalls resolved in the last-level
cache can give the misleading impression that a portion of the data
working-set fits into this cache. Actually, a lot of these hits are not
due to data reuse, but to the implementation of aggressive hardware
prefetching mechanisms in the CPU of the system under test. In
applications with simple access patterns, such as FMA operations
on large vectors, the prefetcher works effectively, resulting in a
large number of hits on the LLC. From a top-down methodology
standpoint, these loads are resolved in LLC, but from a performance
perspective, the requests generated by the prefetcher are the critical
ones, and these are resolved at the rate supported by the memory
controller.

The critical role of the memory controller in LLM inference,
highlighted by the top-down methodology, is further supported
by additional experiments. One of the features available in the Re-
source Director technology of Intel processors, called MBA [32][33]
(Memory Bandwidth Allocation), allows approximate control over

Figure 7: Performance degradation as bandwidth decreases
from 100 to 10%.

the memory bandwidth available to the workload. Using this fea-
ture, Figure 7 illustrates how raw performance (tokens per second)
evolves as the bandwidth available for the inference process de-
creases from 100 to 10%. The results on the y-axis have been nor-
malized to those obtained with full bandwidth availability. Given
the uniformity observed across models, we present the results for
a single model (llama3-8B). As observed, this experiment enables
us to quantify the impact of reduced bandwidth on performance
loss in this specific CPU. Halving the bandwidth roughly doubles
the inference time, while limiting it to 10% can increase the token
prediction time up to a factor of 10. It should be noted that for
other processors that have a lower peak bandwidth per CPU, the
impact on performance will be even more substantial. As shown,
the results are consistent across data types (despite the differences
observed in Figure 6), confirming that the size of L3 data series in
Figure 6 has a minimal impact on performance.

2.3 LLMs and Cache Hierarchy
The fact that most CPU memory requests are resolved at the mem-
ory controller indicates that the cache hierarchy is not working as
expected. The design principles of the cache hierarchy are based
on memory access locality, which is common in most conventional
applications. However, this does not appear to be the case for LLM
inference workloads. The platform’s support for tuning certain con-
figuration parameters of the cache hierarchy online, allows us to
extend the profiling process and evaluate the spatial and temporal
locality of these workloads.

Mechanisms like simple next-block prefetching are designed
to exploit spatial locality. For linear memory accesses (high spa-
tial locality), prefetching the next contiguous blocks can provide
a significant performance benefit. Using Model-Specific Registers
(MSRs), we can manipulate the hardware prefetching process to
assess the occurrence of this type of locality. In our particular
case, according to Intel’s documentation [34], the five least signifi-
cant bits of MSR 0x1A4 are responsible for enabling and disabling
prefetching. Figure 8 shows the token prediction slowdown for each
model evaluated when hardware prefetching is disabled. The y-axis
values are normalized to the prediction time with prefetching. We
can see two different results. On the one hand, for data types fp16,



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Pablo Abad et al.

Figure 8: Prefetcher effect on performance.

q8 and q4, the performance benefit is clear, confirming the spatial
locality associated with the predominant FMA operation on large
vectors. On the other hand, models with fp32 weights do not seem
to benefit from prefetching. The same locality should be present
regardless of the data type, so this behavior must be attributed to
some other underlying factor. Using the Linux perf profiler, we can
gather information about hardware prefetching activity. In the case
of the fp32 models we have observed that no prefetching activity
is detected (even though the prefetcher is enabled). This is likely
due to the high bandwidth consumption that the fp32 data type
imposes on the memory controller.

Another locality type exploited by the cache hierarchy is tempo-
ral locality. In this case, cache capacity plays a key role in exploiting
this property, since a larger cache reduces the chance of collision
(and replacement), allowing the same data to be reused multiple
times. To evaluate the presence of this locality, we again use a
Resource Director feature, called Cache Allocation Technology
[35][36]. This allows control over the amount of cache allocated
to each core-set by limiting the cache ways where they can write
data. In Figure 9, we have progressively limited the size of LLC and
L2 to the LLM execution, first reducing the number of LLC ways
from 15 to 1 and then reducing the number of L2 ways from 16 to
2. The y-axis represents the slowdown in token prediction time,
normalized to the time with the entire cache hierarchy available.
Given the uniformity across models, we limit the results to two
models, llama2-1B and mistral-7B. As can be seen, reducing the
cache capacity by almost 16 has a negligible impact on performance,
suggesting that there is no reuse at these levels, due to the massive
working set of the LLM models.

In Sections 2.2 and 2.3 we have described in detail the microar-
chitectural bottlenecks resulting from the LLM code structure and
a general-purpose processor backend. The dominance of a specific
SIMD operation limits the utilization of available execution ports
and functional units. In addition, a very specific access pattern and
large data structures favor spatial locality but almost prevent cache
reuse, rendering a significant portion of the memory hierarchy use-
less. These two factors (the memory hierarchy to a greater extent)
are behind the limited performance observed in Figure 2. Future

Figure 9: LLC and L2 capacity reduction, performance effect.

generations of processors will need to progressively increase mem-
ory bandwidth and vector processing capacity to further improve
the per-core performance for these types of applications.

2.4 Thread Scaling (TLP Limitation)
LLMs are highly data parallel (that’s why they work so well on
GPUs), which eases DLP exploitation through multi-threaded exe-
cution. However, thread scaling can be strongly limited by one of
the bottlenecks observed in previous section, BW availability.

To evaluate this, wewill gradually increase the number of threads
from one to 32 (upper limit, with one thread per logical core while
SMT is enabled). In executions with 16 threads or less, each thread
is mapped to a different physical core to avoid unnecessary con-
tention.

Figure 10 displays how the inference performance of the quan-
tized models (q4 and q8) increases almost linearly with the number
of threads until it reaches the number of physical cores (16). Beyond
this point, the performance continues to increase, but at a slower
rate due to core resource sharing through SMT. In contrast, models
with fp weights do not scale as well as quantized models. Looking
at the fp16 data series, the performance improvement almost levels
off when 16 threads are reached. This behavior appears to be caused
not only by SMT utilization, but also by exceeding the bandwidth
availability. We have observed that each thread reduces its band-
width utilization by half when moving from 16 to 32 threads. The
scaling limitations are even more apparent with fp32, where the
performance improvement plateaus at 8-10 threads. This is because
the bandwidth requirements are twice as large as fp16 due to the
difference in data size.

This behavior is consistent across model sizes, as shown when
comparing Llama3-8B model with Llama2-1B model. Bandwidth
requirements appear to be independent of the model and primarily
depend on the data type. The number of threads that reach peak
performance is mainly limited by the bandwidth available in the
entire system.



Server consolidation with LLM applications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 10: LLM performance, thread scaling. Llama3-8B model (left) and Llama2-1B model (right).

Figure 11: Thread mapping to evaluate collision in last-level
cache (up) and in each physical core when shared through
SMT (down).

3 LLM-Spec resource sharing
The previous section demonstrated that, even when LLMs extract
the maximum performance from the processor, they make ineffi-
cient use of a significant portion of the hardware resources, as both
the cache hierarchy and part of the functional units remain largely
underutilized. The underlying cause of this behavior is the unique
structure of these applications, which differs significantly from con-
ventional applications in general-purpose environments. In fact,
applications from benchmarks such as SPEC CPU 2017 [17] have
much less available data parallelism available and are generally
more cache-friendly [37].

Since each type of application appears to use different elements
of the microarchitecture, the question arises as to whether running
both applications concurrently could enhance the processor uti-
lization. To explore this possibility, the first step is to analyze in
detail the interaction of the shared microarchitectural resources.
To this end, the experiments are divided into two categories. First,
we investigate collisions at the last level cache by mapping LLM
and SPEC threads to different cores, as shown in Figure 11(top).
Next, we evaluate the degree of collision when SPEC and LLM

Figure 12: IPC evolution of SPEC applications when sharing
LLC with LLMs.

applications share physical cores via SMT. In this case, in addition
to the LLC, the processor backend and L1/L2 caches are shared
between two different threads. The following subsections describe
these experiments and the results obtained.

3.1 Global Resources (LLC)
Despite the lack of temporal locality, the large working-set of LLMs
could pollute shared levels of the cache hierarchy, negatively affect-
ing the performance of collocated threads. To analyze the degree
of interference, we divide the processor in half, one for each type
of application, as shown in Figure 11(top), keeping both applica-
tions in different physical cores. In the SPEC half of the CPU, we
will make use of the Benchcast tool [18] to generate a sufficiently
large population of randomized conventional workloads to ensure
statistically meaningful results. First, we will obtain a normal dis-
tribution of IPC results when such workloads are executed alone.
Next, we will compare these results to those obtained when SPEC
is run alongside an LLM model. In the LLM portion, we will run
each model with a number of threads equal to the number of cores,
ensuring that the inference process runs continuously throughout
the evaluation.

Figure 12 shows the performance results for SPEC applications
under both scenarios, running alone (Normal alone data series)



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Pablo Abad et al.

Figure 13: Performance degradation of LLM when physical
core is shared through SMT.

and with LLM. As discussed in previous experiments, we limit the
evaluation to a single LLM model (llama3-8B) for clarity. We will
evaluate the degree of collision in three data types used in the
weights. Two are floating-point (Normal mixed f32 and f16) and
one is quantized (Normal mixed q4). The graph shows a frequency
histogram of the IPC distribution, obtained from over 300 random
combinations of SPEC applications running for at least 40 seconds
in their region of interest. Since all four data series show a very
similar IPC distribution, we can conclude that the presence of an
LLM application on the same processor has, on average, a minimal
impact on the performance achieved by SPEC applications. This
lack of contention seems to indicate that there is no pollution of
last-level cache with data blocks from LLM execution. Since the
lack of temporal locality minimizes the number of references to
LLM blocks, they appear to be quickly selected for eviction by the
replacement policy. On the other side of the processor, in terms
of LLM thread performance, we know from Figure 9 that reducing
the LLC size (through Cache Allocation Technology available in
Resource Director) has a negligible effect on inference performance.
This supports the hypothesis that due to the effectiveness of the
replacement policy, collisions between both types of workloads are
minimal in this microarchitecture component.

Based on the results obtained so far, we can conclude that in
cases where LLM is constrained by memory bandwidth limitations,
introducing conventional applications in the remaining cores can
be a viable strategy to improve overall processor utilization. In the
specific case of the test system, with 8 threads of Llama3-8B and
fp32 data type, the memory bandwidth is almost exhausted and it is
not possible to obtain higher performance by increasing the number
of threads (Figure 10). In this situation, it is possible to add 8 SPEC
applications at almost no cost (Figure 10 and Figure 12). Due to
the efficiency of the on-chip memory hierarchy, most SPEC-based
workloads do not seem to suffer from bandwidth exhaustion. The
LLM model will run close to peak performance on this system, and
the SPECs will make the best possible use of the CPU without the
interference from the LLM model.

Figure 14: Performance degradation of SPEC when physical
core is shared through SMT.

3.2 SMT-Shared Resources (L1-L2, FUs)
To further explore the collision effects, we next organize thread
execution by mapping SPEC and LLM threads to each logical core
(SMT enabled) of the same physical core (Figure 11, bottom). Again,
due to the consistency of the results, we limit the exploration to a
single model for the LLM (Llama3-8B). We chose the q4 and fp16
data types because their performance scales with the number of
threads until they occupy all physical cores, and because they rep-
resent different ways of using core resources. To better understand
the exploration, instead of using BenchCast to generate combi-
nations, we first evaluate the collision of each SPEC application
individually. First, Figure 13 shows the performance degradation
(normalized prediction time, tokens per second) experienced by the
LLM execution when sharing the physical core with each SPEC
application. As can be seen, the LLM data type has a negligible
impact on the results, and each combination moves in a narrow
range around 30% performance degradation. Looking more closely
at the individual results, we observe some peculiar behavior. First,
the x264 combination suffers a much smaller degradation. The
reason for this is the large amount of IO operations of this SPEC,
which reduces its CPU utilization and favors LLM execution. The
other notable result is the difference observed between INT and FP
SPEC applications. As can be seen, when the core is shared with FP
applications (cactuBSSN to roms), there is an increase in the loss
of performance. The processor’s port organization, which groups
FP and SIMD units for scheduling, may increase contention in the
core’s backend, further exacerbating the performance degradation
when both types of applications run concurrently.

From the opposite perspective, Figure 14 displays the same re-
sults for SPEC applications showing how their performance is af-
fected when sharing the core with LLM applications. The y-axis
represents the normalized execution time, and the columns show
the performance degradation of each SPEC running next to the
selected LLM model with two different data types. These results
show a similar trend, with performance degradation approaching
30%. In addition, the distinct behavior of x264 and the differences
between INT and FP applications are even more noteworthy in this
case.



Server consolidation with LLM applications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Table 3: System under test.

Characteristic Test system 1 Test system 2
Model name INTEL®XEON®SILVER 4514Y AMD EPYC 7713P
Num cores 16 (32 SMT) 64 (128 SMT)
L1 ICache 32KB/core 32KB/core
L1 DCache 48KB/core 32KB/core
L2 Cache 2MB/core 512KB/core
LLC 30MB 256MB
Memory Channels 8 8
RAM 256 GB (8x32GB) DDR5 256GB (8x32GB) DDR4
Max. Memory Bandwidth 275 GB/s 205 GB/s
AVX FMA Units 2xFMA-256b 1xFMA-512b 2xFMA-256b
Operating System Debian 12.0 Debian 12.0
Kernel Linux 5.10.0-28-amd64 Linux 5.10.0-28-amd64

Figure 15: IPC distribution of SPEC applications using SMT alone or along with Llama3-8B fp16 (left) and Q4 (right).

By sharing both last-level cache resources or core and private
cache levels through SMT, the performance degradation experi-
enced by each type of application seems to be limited (minimal in
the case of last-level cache). This fact, coupled with the inability
of LLM models to fully utilize hardware resources, raises the key
question that drives this work. If circumstances make a general-
purpose CPU the only available/appropriate environment to run
an LLM model, can we efficiently combine the inference with other
applications to improve the aggregate utilization of the underlying
hardware?

4 Server optimization
Building on the findings so far, which emphasized the low utilization
of the cache hierarchy by LLMs and the minimal collision between
the inference workload and regular applications, we now focus on
strategies to maximize overall server utilization by running both
applications with SMT enabled.

We have already assessed the behavior of LLM models when
running alone in the SMT (Figure 10). Next, we evaluate the impact
of the SMT on conventional workloads in the absence of the LLM
inference, and then assess the overall system performance when
these workloads run concurrently with an LLMmodel. As discussed
in the previous sections, we limit our evaluation to a single model
(Llama3-8B) and fp16 and q4 datatypes. To obtain statistically

meaningful results, we use the Benchcast tool in test system 1
(Table III) and run more than 300 random combinations of SPECs
for each curve. Figure 15 shows a frequency histogram of the IPC
distribution of SPECs running on all threads of the processor (32th,
using SMT) and SPECs together with LLM, each using half of the
processor (16 SPEC threads and 16 LLM threads), as seen in Figure
11 bottom, all compared to the execution of SPECs not using SMT
(16th).

As shown in Figure 15, SPEC applications tend to interfere with
each other more than SPEC and LLM applications combined. Con-
ventional applications running alone using SMT reach an average
of 1.3 instructions per cycle (lower than the 2.1 IPC average ob-
tained without SMT), which means that using SMT the overall
utilization of the server has been increased by ∼25% (i.e., from 2.1
to 2.6). Although enabling SMT is beneficial, when the same class
of workloads are paired with the LLM inference workloads, they
are able to achieve up to 1.6 instructions per second on average.
This suggests that, from the SPEC application’s point of view, shar-
ing a core with an LLM model is more favorable than sharing it
with another regular application. This result builds on previous
observations of limited interference between LLM models and con-
ventional applications at distant levels of the memory hierarchy. It
also suggests that the conflict that arises in cores is less significant



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Pablo Abad et al.

Figure 16: Thread distribution among logical cores. LLM alone (left) and LLM (red) and SPEC (blue) mixed (right).

than that observed when conventional applications compete with
each other.

Building on this result, we extend our analysis to determine
where the optimal configuration that maximizes server utilization
is by varying the number of hardware threads allocated to the
LLM model and conventional applications. To achieve this, we will
evaluate the performance of the test system 1 when fully dedicated
to LLM execution and its performance when fully dedicated to
conventional applications. We will then compare these results to
the performance achieved when both are run in combination, as
shown in Figure 16.

To quantify the performance of LLM on its own, we gradually in-
crease the number of threads used for inference. Threads are pinned
to logical cores, first filling the physical cores (to avoid collisions),
then adding more and more colliding hardware contexts (Figure
16 left). As a measure of performance, we use the average “eval
time” tokens/sec for each configuration. As noted earlier, unlike
in SPEC-based workloads, IPC is not an appropriate performance
metric for LLM due to the synchronization requirements and the
significant number of instructions required in the dequantization
processes.

Conventional workload evaluation is performed by launching
more than 300 random combinations of SPEC applications per
measure, gradually increasing the number of running threads. First
the physical cores are filled, then interfering hardware contexts are
allocated (as on Figure 16 up). As a performance metric, we use
the cumulative IPC provided by Benchcast, which is obtained by
multiplying the average IPC by the number of running applications.
This yields the system performance for each thread configuration.

Finally, we measure the performance of both workloads (LLM
Llama3-8B and the conventional applications) running simulta-
neously, gradually increasing the number of LLM threads while
reducing the number of SPEC threads through Benchcast (Figure
16 right).

Figure 17 shows the performance results when running SPEC-
based workloads alongside with Llama3-8b FP16. All performance
results are normalized to the maximum performance obtained when
each workload is run alone (LLM and SPEC, respectively). A 95%
confidence interval was used for all results. The horizontal axis
represents the number of threads dedicated to the LLMmodel, while
the number of SPEC threads is the remainder (32 - number of LLM
threads). The vertical axis is the normalized performance.

Figure 17: Normalized performance of Llama3-8B fp16 alone,
SPEC alone and both applications running together in test
system 1.

As shown, the behavior of both LLM and SPEC workloads run-
ning alone is similar (note that the number of SPEC threads grows
inversely with the number of LLM allocated threads). Both applica-
tions exhibit relatively linear throughput growth with the number
of threads up to the number of physical cores. Beyond that point,
adding more threads leads to diminishing returns as they begin to
interfere in the core and private sections of the cache hierarchy.
In the case of the LLM model, enabling SMT has a slight negative
impact, as there is an imbalance in the work rate of the different
threads and the bandwidth limit is almost reached. Bandwidth
saturation also explains why performance remains almost identical
when moving from 16 to 32 threads (less than 10% difference).

When both workloads run concurrently (solid lines), there is
an expected performance loss when looking at them individually,
because all cores use SMT. The observed loss is similar to that
discussed in section III.B. However, the performance loss from
sharing core and cache resources is less than when they have to
share them with themselves. When evaluating the normalized
added performance of the two workloads, we can see that any
combination of them improves the performance obtained when
running either of them alone. The best case being when applications
of the same type do not collide, and the processor is shared close to
50% (12-16 LLM threads). In this scenario, where both applications



Server consolidation with LLM applications ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA

Figure 18: Normalized performance of Llama3-8B Q4 alone,
SPEC alone and both applications running together in test
system 1.

achieve their maximum performance per thread, an improvement
of nearly 30% in overall system utilization is observed.

If we repeat the same analysis with Llama3-8B Q4 (Figure 18),
we can see that although the result is similar, the total improve-
ment observed with the combined execution is slightly lower, with
maximum values close to a 20%. This is consistent with what was
observed in Section III.B, where we saw that both SPEC applica-
tions and LLM had slightly higher interference when sharing the
core due to the dequantization. Furthermore, as previously noted,
Llama3-8B is able to further increase its performance in the pres-
ence of SMT using Q4, primarily due to the memory bandwidth
utilization, which limits any performance gains at lower thread
counts. Nevertheless, combined execution still yields performance
improvements up to 24 LLM threads, peaking at 12-16 threads,
similar to the fp16 configuration.

Finally, we conduct a similar experiment on a slightly older sys-
tem with different characteristics. Test system 2 represents a very
different use case than the previous one but is still a representative
system of what can be found in a cloud infrastructure. While test
system 1 had a generous available bandwidth per core, the avail-
able bandwidth per core in test system 2 is lower because it has
a different memory standard (DDR4 vs. DDR5) and 4 times the
number of cores than test system 1 has. The number of memory
channels used is limited to half of the available hardware capacity
to intentionally exacerbate the memory constraints faced by the
LLM (i.e., a form of worst-case scenario). In addition, the processor
architecture is different in terms of cache hierarchy and core orga-
nization, and does not support AVX 512 (i.e., approximately half of
compute bandwidth of test system 1).

Figure 19 presents the performance results on test system 2,
where SPEC and LLM are run in a similar fashion to test system 1.
As shown, Llama3-8B FP 16 reaches memory bandwidth saturation
at 32 threads when running alone on this system, meaning that
performance hardly improves beyond that point. In addition, per-
formance drops dramatically in this system when LLM uses SMT,
probably due to the high degree of collision in core and memory
(at saturated bandwidth). Synchronization between threads, which
must run at the pace of the slowest one, could exacerbate this effect,

Figure 19: Normalized performance of Llama3-8B fp16 alone,
SPEC alone and both applications running together in test
system 2.

coupled with thread migrations observed during the execution (not
observed in test system 1, despite of the use of the same software
stack in both systems). In contrast, conventional applications get
similar results when running alone, as observed in test system 1.

When both applications are combined, the conventional appli-
cations suffer a higher degree of interference than in test system
1, with some impact from collision in the LLC. This is most likely
because the insertion-replacement policy in test system 1 might
effectively prevent LLC pollution from the LLM, while it is less able
to do so in test system 2. In any case, the near-peak performance
achieved by the 32-40-thread LLM model allows the normalized
combined performance of the two applications to improve by up
to 30% over the performance when either is run alone, since there
is almost no benefit to adding additional LLM threads and con-
ventional applications get to run with little impact on the LLM
model performance. Thus, even in this worst-case scenario, the
observations from the more favorable scenario still hold.

5 Conclusions
The results presented in this paper demonstrate the low hardware
resource utilization of the LLM models on a general-purpose pro-
cessor. Their limited use of the cache hierarchy, coupled with the
simplicity of their code, allows them to run alongside other con-
ventional applications such as SPEC with reduced impact.

Based on the findings presented in this paper, running both SPEC
applications and LLM models in parallel, without leveraging SMT,
shows minimal impact on their behavior. Since the main limitation
on thread scaling in LLMs is memory bandwidth, it would be pos-
sible to launch as many LLM threads as possible until reaching a
point close to memory bandwidth saturation and then fill the re-
maining CPU cores with conventional applications such as SPECs
to achieve maximum performance results at reduced cost.

In addition, the limited in-core collision that LLM models have
with conventional applications such as SPECs allows for the com-
bined execution of both using the SMT. This results in a cumulative
weighted performance that is higher than running either of them
independently. This sweet spot depends on the system, but it has
been shown to be close to 30% improvement in a real system.



ICS ’25, June 08–11, 2025, Salt Lake City, UT, USA Pablo Abad et al.

Acknowledgments
This work was supported by the Spanish Government (Ministe-
rio de Ciencia, Innovación y Universidades / Agencia Estatal de
Investigación) under grant PID2022-139664NB-I00.

References
[1] [1] A. Vaswani et al., “Attention is all you need,” inAdvances in Neural Information

Processing Systems, 2017, pp. 6000–6010.
[2] T. B. Brown et al., “Language Models are Few-Shot Learners,” May 2020, doi:

10.48550/arxiv.2005.14165.
[3] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in English and

Mandarin,” in 33rd International Conference on Machine Learning, ICML 2016,
2016, vol. 1.

[4] J. Li et al., “Large Language Model Inference Acceleration: A Comprehensive
Hardware Perspective.” 2024.

[5] A. Rodriguez, E. Segal, E. Meiri, E. Fomenko, Y. J. Kim, and H. Shen, “Lower
Numerical Precision Deep Learning Inference and Training,” Intel White Paper,
2018.

[6] G. Henry, P. T. P. Tang, and A. Heinecke, “Leveraging the bfloat16 Artificial Intelli-
gence Datatype for Higher-Precision Computations,” in Proceedings - Symposium
on Computer Arithmetic, 2019, pp. 69–76. doi: 10.1109/ARITH.2019.00019.

[7] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Hera-
cles: improving resource efficiency at scale,” in Proceedings of the 42nd An-
nual International Symposium on Computer Architecture, 2015, pp. 450–462. doi:
10.1145/2749469.2749475.

[8] S. Chen, C. Delimitrou, and J. F. Martinez, “PARTIES: QoS-Aware Resource
Partitioning for Multiple Interactive Services,” in International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems - ASPLOS,
2019. doi: 10.1145/3297858.3304005.

[9] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-aware
cluster management,” in International Conference on Architectural Support
for Programming Languages and Operating Systems - ASPLOS, 2014. doi:
10.1145/2541940.2541941.

[10] L. Pons, M. Navarro, S. Petit, J. Pons, M. E. Gómez, and J. Sahuquillo, “SMT
efficiency in supervised ML methods: a throughput and interference analysis,”
Journal of Big Data, vol. 11, no. 1, p. 152, 2024, doi: 10.1186/s40537-024-01013-5.

[11] S. Mittal, P. Rajput, and S. Subramoney, “A Survey of Deep Learning on CPUs:
Opportunities and Co-Optimizations,” IEEE Transactions on Neural Networks and
Learning Systems, 2021, doi: 10.1109/TNNLS.2021.3071762.

[12] J. Park et al., “Deep Learning Inference in Facebook Data Centers: Characteriza-
tion, Performance Optimizations and Hardware Implications.” 2018.

[13] Q. Hu et al., “Characterization of large language model development in the
datacenter,” in 21st USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 24), 2024, pp. 709–729.

[14] M. Wang et al., “Characterizing Deep Learning Training Workloads on Alibaba-
PAI,” in Proceedings of the 2019 IEEE International Symposium on Workload Char-
acterization, IISWC 2019, 2019. doi: 10.1109/IISWC47752.2019.9042047.

[15] S. Na, G. Jeong, B. H. Ahn, J. Young, T. Krishna, and H. Kim, “ Understanding
Performance Implications of LLM Inference on CPUs ,” in 2024 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), 2024, pp. 169–180. doi:

10.1109/IISWC63097.2024.00024.
[16] H. Shen, H. Chang, B. Dong, Y. Luo, and H. Meng, “Efficient LLM Inference on

CPUs,” arXiv, vol. abs/2311.0, 2023.
[17] “SPEC CPU 2017,” 2017. https://www.spec.org/
[18] P. Prieto, P. Abad, J. A. Gregorio, and V. Puente, “Fast, Accurate Processor Evalu-

ation through Heterogeneous, Sample-based Benchmarking,” IEEE Transactions
on Parallel and Distributed Systems, 2021, doi: 10.1109/TPDS.2021.3080702.

[19] G. Gerganov, “Llama.cpp: Inference in pure C/C++.”
[20] G. Gerganov, “ggml: tensor library for machine learning.”
[21] P. Zhang, G. Zeng, T. Wang, and W. Lu, “TinyLlama: An Open-Source Small

Language Model,” arXiv, vol. 2401.02385, 2024.
[22] R. Li et al., “StarCoder: may the source be with you!,” arXiv, vol. abs/2305.0, 2023.
[23] H. Touvron et al., “Llama 2: Open Foundation and Fine-Tuned Chat Models.”

2023.
[24] A. Q. Jiang et al., “Mistral 7B.” 2023.
[25] A. Grattafiori et al., “The Llama 3 Herd of Models.” 2024.
[26] S. Black et al., “GPT-NeoX-20B: AnOpen-Source Autoregressive LanguageModel.”

2022.
[27] P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger, “A Closer Look at

Intel Resource Director Technology (RDT),” in ACM International Conference
Proceeding Series, 2022. doi: 10.1145/3534879.3534882.

[28] M. Brysbaert, “How many words do we read per minute? A review and meta-
analysis of reading rate,” Journal of Memory and Language, vol. 109, 2019, doi:
10.1016/j.jml.2019.104047.

[29] A. Yasin, “A Top-Down method for performance analysis and counters architec-
ture,” in ISPASS 2014 - IEEE International Symposium on Performance Analysis of
Systems and Software, 2014. doi: 10.1109/ISPASS.2014.6844459.

[30] “Intel PMU Profiling Tools Source Code and Documentation.” https://github.com/
andikleen/pmu-tools

[31] A. C. de Melo, “The New Linux ‘perf’ Tools,” 17 International Linux System
Technology Conference. Nuremberg, 2010.

[32] Y. Xiang, C. Ye, X. Wang, Y. Luo, and Z. Wang, “EMBA: Efficient memory band-
width allocation to improve performance on intel commodity processor,” in ACM
International Conference Proceeding Series, 2019. doi: 10.1145/3337821.3337863.

[33] J. Park, S. Park, and W. Baek, “CoPart: Coordinated partitioning of last-level
cache and memory bandwidth for fairness-aware workload consolidation on
commodity servers,” in Proceedings of the 14th EuroSys Conference 2019, 2019. doi:
10.1145/3302424.3303963.

[34] I. Corporation, “Intel®64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide,” vol. 3, no. 253665, pp.
1–1386, 2013.

[35] M. Xu, L. T. X. Phan, H. Y. Choi, and I. Lee, “VCAT: Dynamic cache management
using CAT virtualization,” in Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS, 2017. doi: 10.1109/RTAS.2017.15.

[36] M. Xu, R. Gifford, and L. T. X. Phan, “Holistic multi-resource allocation for
multicore real-time virtualization,” in Proceedings - Design Automation Conference,
2019. doi: 10.1145/3316781.3317840.

[37] A. Limaye and T. Adegbija, “A Workload Characterization of the SPEC CPU2017
Benchmark Suite,” in Proceedings - 2018 IEEE International Symposium on Per-
formance Analysis of Systems and Software, ISPASS 2018, 2018, pp. 149–158. doi:
10.1109/ISPASS.2018.00028.

https://www.spec.org/
https://github.com/andikleen/pmu-tools
https://github.com/andikleen/pmu-tools

	Abstract
	1 Introduction
	2 LLM Profiling
	2.1 Hardware & Software Stack
	2.2 CPU Bottlenecks (ILP Limitation)
	2.3 LLMs and Cache Hierarchy
	2.4 Thread Scaling (TLP Limitation)

	3 LLM-Spec resource sharing
	3.1 Global Resources (LLC)
	3.2 SMT-Shared Resources (L1-L2, FUs)

	4 Server optimization
	5 Conclusions
	Acknowledgments
	References

