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Abstract
Large-scale graph tasks often have to be conducted in parallel on
partitioned graphs. However, current partitioning methods, de-
signed for smaller-scale clusters with a limited number of com-
puting nodes, struggle to scale effectively due to their inability to
handle messages transferred through traditional partitioning grids.
We present YH-Light, an hierarchy-aware partitioning engine on
Tianhe supercomputers to minimize communication. The key idea
of YH-Light is to take advantage of the hierarchical communication
topology to perform a graph partition based on communication
hierarchies, where scattered messages are (i) clustered with hub
vertices according to the organization of the computing nodes and
(ii) grouped and then exchanged messages according to hierarchical
communication domains. We demonstrate YH-Light’s effectiveness
with synthetic benchmarks and real-world graphs. In particular,
the YH-Light-based Graph 500 tests on the Tianhe supercomputer
outperform the leading systems in the latest Graph 500 list. Further-
more, YH-Light significantly advances graph processing, surpassing
the current state-of-the-art graph partitioning engines and graph
systems by orders of magnitude.

CCS Concepts
• Computing methodologies→ Distributed algorithms; Mas-
sively parallel algorithms.
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1 Introduction
The development of a supercomputer has always been a strategic
goal for many countries [42]. Currently, exascale supercomputers
pose severe efficiency and scalability challenges. Facing the chal-
lenges of the exascale computing and unprecedented large model
training. It is vital for next-generation supercomputers to find ap-
propriate applications with high social and economic benefit. It has
been widely accepted that graph computation is a promising killer
application for supercomputers.

As the graph scale (i.e. the number of vertices and edges) in-
creases explosively, the required computation resources also in-
crease. For example, the Sogou graph [28, 46], comprising 271.8
billion vertices and 12.3 trillion edges, is processed using millions
of cores on the TaihuLight supercomputer [28]. Similarly, the Kro-
necker graph [21] on a scale of 43 (a.k.a. Kron-43), with 6.6 trillion
vertices and 105.6 trillion edges, is managed by the Fugaku super-
computer, which utilizes 152,064 CNs1.

Graph 500, a serious approach to complement the Top 500, re-
flects the ability of supercomputers to deal with large-scale graphs
generated from practical data-intensive applications. Although
Tianhe supercomputers have led the world-wide competition of
supercomputers (ranked No. 1 in the Top 500 list six times), they
had been inefficient in large-scale graph processing according to
the Graph 500 ranking. This was mainly because (i) typical graph
characteristics, such as poor data locality and low memory access
would result in a large number of scattered message exchanging
within supercomputers, and (ii) the current graph partition policy
cannot leverage the advanced architecture features of hierarchical
communication domains, that is, a group of CNs connected to the
same Routing Nodes (RN) [13, 16]. As we develop the latest genera-
tion Tianhe supercomputer, the mismatch between hardware and
software co-designs becomes even more challenging.
1A CN may include one or multiple CPUs or accelerators[14, 42].
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(b) RN-based Graph Partition

Figure 1: Different Graph Partitions

The Graph 500 benchmark ranks supercomputers with data-
intensive applications [1]. Unlike the Top 500 benchmark, which
compares supercomputers using FLOPS (Floating Point Operations
Per Second) for computing-intensive applications [39, 42], Graph
500 instead measures graph processing performance using TEPS
(Traversed Edges Per Second) or GTEPS (Giga TEPS). The most
popular test of Graph500 is the breadth-first search (BFS) evalu-
ation, which can be used as the kernel for many more complex
graph algorithms [11, 41], such as Connected Component(CC) and
Betweenness Centrality (BC). Most graph processing frameworks,
including Ligra [35], Gemini [50], Gluon [7], and TopoX [25], have
been optimized for efficient BFS implementation.

Recent advances in large-scale graph processing perform op-
timally on high-performance computing (HPC) machines with a
limited number of available CNs [7, 8, 25, 50]. A key reason for this
is the assumption that the communication overhead remains rela-
tively uniform across hierarchical communication domains within
HPC systems. This assumption holds for small-sized HPC systems;
it is not true for large-scale HPC systems (e.g., supercomputers) in-
volving hundreds or more CNs. There are mainly two types of nodes
in large-scale HPC systems, namely CNs and routing nodes (RNs).
CNs are responsible for computation that performs graph tasks on
graphs, while RNs are mainly responsible for message communica-
tion among CNs. To maximize the communication ability of HPC
systems, we can organize CNs and RNs into a hierarchical commu-
nication topology, that is, a communication tree, where CNs are all
leaf nodes and RNs are all branch nodes. Moreover, communication
among lower-level nodes is much faster than that among high-level
ones.

For large-scale distributed graph processing, substantial com-
munication overhead is the dominant factor in determining perfor-
mance. Graph partition is the key step for communication distribu-
tion. There are many existing graph partitioning methods that can
partition a graph into different sub-graphs. When graph algorithms
run on HPC systems, we place those subgraphs onto different CNs,
resulting in different communication costs. Figure 1 gives an ex-
ample of two partitions for one graph, which are named CN-based
graph partition and RN-based graph partition, respectively. In the
CN-based graph partition, the graph vertices 𝑣7 and 𝑣8 are in sub-
graph 𝑔2, but the graph vertex 𝑣3 is in subgraph 𝑔1. Since 𝑣3 are
connected to 𝑣7 and 𝑣8, there exist many information exchanges be-
tween 𝑣3, 𝑣7, and 𝑣8 when performing graph algorithms. However,
if these subgraphs are on different CNs and not attached to the same
domains, then they require a lot of inter-domain communication,
which is expensive.

Although graph processing is relatively straightforward, irreg-
ular graph partition and distribution are the bottleneck in such
scenarios, since mismatching graph partition and target hierarchi-
cal communication topology cause huge cross-domain messages
exchanging, particularly when numerous cross-domain communi-
cations are walking among hundreds of CNs equipped in supercom-
puters. As such, we present YH-Light to bridge the gap between
large-scale graph partitioning and target HPC systems by utilizing
hierarchical communication domains.

To validate YH-Light, we conducted a comprehensive evalua-
tion using a variety of graph algorithms, including BFS, DFS-based
algorithms, Single Source Shortest Path (SSSP), PageRank (PR),
CC, and BC [7, 8, 13, 16, 50], across both synthetic and real-world
graphs. The evaluation was performed on two distinct HPC systems
with varying scales, utilizing the Tianhe supercomputer and a com-
mercial Intel cluster. Extensive results demonstrate that YH-Light
significantly reduces communication overhead and outperforms
state-of-the-art graph partitioning methods. Specifically, YH-Light
achieves a peak performance of 162,494 GTEPS for BFS, surpassing
the fastest BFS systems by a substantial margin. Furthermore, when
applied to real-world graphs, YH-Light achieves orders of mag-
nitude superior performance compared to state-of-the-art graph
partitioning and graph processing systems.

This paper makes the following contribution:
• It proposes a communication hierarchy-aware graph parti-
tioning approach to improve data locality and reduce cross-
domain communication costs.
• It highlights the effectiveness of co-design approaches in
optimizing large-scale graph partitioning and hierarchical
communication within Tianhe supercomputers.
• Extensive experiments show that YH-Light leads to fast pro-
cessing time over state-of-the-art graph engines. More spe-
cially, YH-Light leads the leaderboard in Graph500 BFS rank-
ing using fewer nodes.

2 Background
2.1 Graph Processing
Graphs represent a fundamental data structure for modeling rela-
tionships among discrete entities. Graphs have become a corner-
stone in the representation of complex systems, which emerge as a
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powerful abstraction for efficiently modeling the relationships be-
tween objects. Specifically, vertices and edges are used to represent
objects and their relationships, respectively. Such graph-based rep-
resentations find extensive applications across machine learning,
data mining, and social network analysis [3, 26, 43, 49], path queries
on road networks [31]. Graph processing on a single machine has
been well studied [19, 23, 34, 35] and has achieved high computa-
tion efficiency. However, the rapidly-growing graph scales have ex-
ceeded the memory capacity and processing speed of any individual
machine [15, 44]. This has recently driven the study of distributed
graph processing systems, including Pregel [30], GraphLab [29],
PowerGraph [17], GraphX [18], PowerLyra [6], Gemini [50], and
TopoX [47], etc. While reducing per-node computation load, par-
allel graph processing causes high communication cost. Although
existing studies have extensively studied the partitioning prob-
lem for reducing communication by various methods like edge-cut
[29, 30], vertex-cut [17, 18], hybrid-cut [6], and refactorization [47],
the emergence of extremely large graphs (e.g., Sogou graph and
Kron-43) consisting of trillions of vertices and edges necessitates
the adoption of large-scale distributed systems(e.g., supercomput-
ers) for efficient graph processing. Indeed, many graph processing
algorithms (such as BFS, SSSP, PR, CC and BC, etc.) have been work-
ing efficiently on supercomputers [12, 13, 16, 50] which achieve
significantly higher performance than their distributed HPC coun-
terparts.

However, current distributed graph processing still suffers from
unsatisfactory graph partitioning strategies [13, 16, 50]. That is be-
cause current graph partitioning solutions hardly match large-scale
graph partition and target HPC systems with hierarchical commu-
nication domains. To address this problem, we present YH-Light: a
partitioning engine based on the hierarchy of communication for
large-scale graph processing using the hierarchical communication
topology.

2.2 Communication Topology of Large-scale
HPC Systems

Recently, massively parallel HPC systems, the underlying network
connecting hundreds of CNs, have become popular for handling
various graph processing tasks [14, 28, 42, 50]. Large-scale HPC
systems often adopt a hierarchical communication topology [27, 42]
to link different CNs. Due to the good scalability and the tree-based
Mellanox network widely used in HPC systems [13, 16, 37], many
large-scale HPC systems have hierarchical communication domains
of which the architecture can be modeled as a multilevel domain
tree.

As shown in Fig. 2, leaf nodes represent CNs, and inner nodes
such as HRM, HNR, CPM and MCU are switching cells for specific
communication domains at different communication hierarchies,
The sets of computing nodes attached to {𝐶𝑀𝑈1,𝐶𝑀𝑈2, . . . ,𝐶𝑀𝑈7}
are organized into the lowest level communication domains, eg,
{𝐶𝑁1,𝐶𝑁2,𝐶𝑁3,𝐶𝑁4} attached to 𝐶𝑀𝑈1 is a lowest level commu-
nication domain, and the lower level communication domains in-
clude all CNs equipped in {𝐶𝑃𝑀1,𝐶𝑃𝑀2,𝐶𝑃𝑀3,𝐶𝑃𝑀4}. while CNs
attached to {𝐻𝑁𝑅1, 𝐻𝑁𝑅2, 𝐻𝑁𝑅3, 𝐻𝑁𝑅4} represent low-level com-
munication domains. All CNs attached to the HRM organized a
high-level communication domain. Many large-scale HPC systems

CMU1 CMU3 CMU5 CMU7

Figure 2: Hierarchical communication tree with 4-level com-
munication domains, where 4 CNs are equipped in a MCU
(memory control unit) at the lowest-level domain (i.e. level-
0), and 2 CMUs are included in a CPM (computing processor
mainboard) at level-1. The level-2 communication domain
attached to a HNR (hyper networking router ) has 4 CPMs,
and 4 HNRs are organized into a four levels communication
tree attached to thehyper networking machine (HRM).

have hierarchical communication domains of which the architec-
ture can be modeled as a multilevel domain tree as shown in Fig. 2,
a level-𝑖 node inside a tree has 𝑥𝑖 level-(𝑖 − 1) child nodes, and a
ℎ level domain tree accommodates totally

∏ℎ
𝑖=1 (𝑥𝑖 ) CNs. Given

ℎ = 4, if we take 𝑥1 = 4, 𝑥2 = 2, 𝑥3 = 8, 𝑥4 = 16, then we will
have a 1024-node system. In practice, communication latency in
lower-level communication domains is significantly faster than in
higher ones. The communication latency between CNs for the low-
est communication domain can be 1U2, while it can increase by
almost 10 times when across a higher-level communication domain.

Define Θ(𝐶𝑁𝑥 ,𝐶𝑁𝑦) as communication latency between two
computing nodes 𝐶𝑁𝑥 and 𝐶𝑁𝑦 , which can vary significantly de-
pending on their locations. For example, consider three CNs, 𝐶𝑁1,
𝐶𝑁5, and𝐶𝑁9, which are installed in the lowest level CMUs𝐶𝑀𝑈1,
𝐶𝑀𝑈2, and 𝐶𝑀𝑈3, respectively. When measuring the latency be-
tween 𝐶𝑁1 and its adjacent node 𝐶𝑁2 within the same 𝐶𝑀𝑈1, the
latency is minimal,i.e., Θ(𝐶𝑁1,𝐶𝑁2) = 1U. In contrast, the latency
between 𝐶𝑁1 and 𝐶𝑁5, which are connected through the higher-
level switch𝐶𝑃𝑀1, increases to Θ(𝐶𝑁1,𝐶𝑁5) = 10U. Furthermore,
the latency between𝐶𝑁1 and𝐶𝑁9, which reside in the same 𝐻𝑁𝑅1
communication domain, can escalate toΘ(𝐶𝑁1,𝐶𝑁9) = 100U. This
latency variation is mainly attributed to the hierarchical communi-
cation domains, where nodes within the same CMU exhibit lower
latency compared to those in higher-level switches or domains. The
downside of such a design is that cross-dimension communication
will become increasingly inefficient as the number of dimensions
grows. To mitigate cross-domain data movement, we present YH-
Light to orchestrate graph division and distribution by matching
graph partitioning and hierarchical communication domains.

2A U maybe one microsecond, millisecond, or another scale, depending on the target
system.
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2.3 2D decomposition
A commonly used method for partitioning large-scale graph tasks
is the 2D decomposition strategy [5, 13, 16, 45, 50], which divides
the graph into small blocks (a.k.a., subgraph). In this approach, a big
graph is segmented into “m” blocks in the horizontal direction and
“n” blocks in the vertical direction, resulting in “m × n” blocks dis-
tributed across “m × n” CNs, with each CN handling a block. Many
partitioning solutions are variations of the 2D-decomposition( e.g.,
1.5D [4] and XTree [16]), fully utilizing graph properties but often
overlooking the communication hierarchies built in the large-scale
HPC systems. This can lead to frequent cross-domain data transfers
and damage graph processing performance, providing both chal-
lenges and opportunities for improving the performance of graph
processing. Accordingly, we introduce YH-Light, an advanced par-
titioning method to minimize cross-domain communication by
orchestrating graph division and distributions across different com-
munication hierarchies.

3 Modeling Communication Latency
Generally, given 𝑑_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 is the communication latency (i.e., net-
working hops) between any two vertices, let

𝑑_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = 𝑑_𝑖𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒 + 𝑑_𝑖𝑛𝑡𝑟𝑎𝑛𝑜𝑑𝑒 (1)
Here 𝑑_𝑖𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒 and 𝑑_𝑖𝑛𝑡𝑟𝑎𝑛𝑜𝑑𝑒 are communication latency

within the local domain and across domains traveling between CN,
respectively.

Using a quadruple coordination system [13], denoted as (𝑥𝑖
𝑙
, 𝑦𝑖

𝑙
, 𝑥𝑖𝑎, 𝑦

𝑖
𝑎)

for the position of 𝐶𝑁𝑖 within the local and across the communica-
tion domain, we recursively determine the coordinates of the CNs
and estimate the communication path within the local domain and
across domains by factoring in the position of the CNs according
to the hierarchical communication topology.

Define𝑉 𝑙𝑜𝑐𝑎𝑙
𝑖 𝑗

and𝐻 𝑙𝑜𝑐𝑎𝑙
𝑖 𝑗

to express the communication path (i.e.,
communication hops) between 𝐶𝑁𝑖 and 𝐶𝑁 𝑗 within the local do-
main, similarly,𝑉𝑎𝑐𝑟𝑜𝑠𝑠

𝑖 𝑗
and 𝐻𝑎𝑐𝑟𝑜𝑠𝑠

𝑥𝑦 to express the communication
path across domains.

𝐻 𝑙𝑜𝑐𝑎𝑙
𝑖 𝑗 = |𝑥𝑖

𝑙
− 𝑥 𝑗

𝑙
| (2)

𝑉 𝑙𝑜𝑐𝑎𝑙
𝑖 𝑗 = |𝑦𝑖

𝑙
− 𝑦 𝑗

𝑙
| (3)

𝐻𝑎𝑐𝑟𝑜𝑠𝑠
𝑖 𝑗 = |𝑥𝑖𝑎 − 𝑥

𝑗
𝑎 | (4)

𝑉𝑎𝑐𝑟𝑜𝑠𝑠
𝑖 𝑗 = |𝑦𝑖𝑎 − 𝑦

𝑗
𝑎 | (5)

As such, we can approximate 𝑑_𝑖𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒 and 𝑑_𝑖𝑛𝑡𝑟𝑎𝑛𝑜𝑑𝑒 by
determining the distances between the nodes within each commu-
nication domain.

𝑑_𝑖𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒 = 𝜖𝑣𝑉
𝑙𝑜𝑐𝑎𝑙
𝑖 𝑗 + 𝜖ℎ𝐻 𝑙𝑜𝑐𝑎𝑙

𝑖 𝑗 (6)
𝑑_𝑖𝑛𝑡𝑟𝑎𝑛𝑜𝑑𝑒 = 𝜖𝑣𝑉

𝑎𝑐𝑟𝑜𝑠𝑠
𝑖 𝑗 + 𝜖ℎ𝐻𝑎𝑐𝑟𝑜𝑠𝑠

𝑖 𝑗 (7)
Such that 𝜖ℎ and 𝜖𝑣 represent the transmission delay per hop

along the horizontal and vertical directions, respectively, at each
domain level.

Given a graph G = (𝑉 , 𝐸) partitioned and distributed into the
CNs of the HPC system with hierarchical communication domains.
A partitioning engine aims to minimize communication hops from
all vertices. Taking the worst case into account, there is message

transfer between any pair of vertex so that the objective can be
formulated as follows.

min
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

Θ(𝑣𝑖 , 𝑣 𝑗 ),

subject to 𝑣𝑖 , 𝑣 𝑗 ∈ HirCS.CNs.
(8)

where 𝑁 is the total number of vertices in G, and HirCS.CNs
refers to the set of computing nodes belonging to a large-scale
HPC system (named HirCS). Θ(𝑣𝑖 , 𝑣 𝑗 ) is the cost of communication
of messages between 𝑣𝑖 and 𝑣 𝑗 distributed into CNs equipped in
HirCS.

Solving Eq. 8 is in NP [10, 20], which can approximate the accu-
mulative communication hops between any two CNs as Eq. 9.

min
𝑁∑︁
𝑥=1

𝑁∑︁
𝑦=1

Θ(𝑁𝑥 , 𝑁𝑦) = 𝑑_𝑖𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒 + 𝑑_𝑖𝑛𝑡𝑟𝑎𝑛𝑜𝑑𝑒 (9)

where𝑑_𝑖𝑛𝑡𝑒𝑟𝑛𝑜𝑑𝑒 and𝑑_𝑖𝑛𝑡𝑟𝑎𝑛𝑜𝑑𝑒 are the inter-domain and intra-
domain communication hops through RNs, respectively, Eq. 9 can
be further simplified as:

{
min

∑𝑁
𝑥=1

∑𝑁
𝑦=1 Θ(𝑁𝑥 , 𝑁𝑦) =∑ℎ

𝑙=1

(∑𝑁
𝑖=1 Θ(𝑁𝑙 , 𝑁𝑖 ) +

∑𝑁
𝑗=1 Θ(𝑁𝑙 , 𝑁 𝑗 )

) (10)

Clearly, ℎ is the lowest domain level where both 𝑁𝑙 and 𝑁𝑖 / 𝑁 𝑗

are located. It is easy to see that cross-domain communication takes
the majority of accumulative communication costs and dominates
the communication overhead in large-scale graph processing in
HPC systems according to Eq. 9∼10. That is because (i) the inter-
domain communication is orders of magnitude higher than that
of intra-domain communication, and (ii) there are a large number
of inter-domain communication in large-scale graph processing
within hierarchical communication domains [13, 16, 28, 40].

To fully exploit advanced communication hierarchies, we present
YH-Light to release powerful architectural features with hierarchi-
cal communication topology. YH-Light is built on the 2D decompo-
sition, dividing the input graph into subgraphs and assigning each
subgraph to a low-level communication domain. With this policy,
many cross-domain communication can be translated into local
communication within intra-domain communication by carefully
orchestrating graph partitioning.

4 YH-Light philosophy
Our newly developed graph partitioning engine aims to improve
classical 2D decomposition by considering the hierarchical com-
munication topology and the varying costs across communication
hierarchies. The key idea of YH-Light is to partition the graph
based on the spatial locality of subgraphs, each subgraph is then
assigned within the lowest communication domain, ensuring com-
munication remains within a single subgraph. thereby minimizing
cross-domain communication as much as possible.
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4.1 Core Tree
Similarly to many graph partitioning strategies [8, 13, 16, 50], we
begin by extracting the spatial locality of subgraphs from the in-
put graph. This can be achieved by multiple methods, e.g., sub-
graph [4], subtree [16], and vertex clustering [13]. Owing to the
strong cohesion of MST (Minimal Spanning Tree), in this work, we
present a core tree policy based on MST to complete core tree ex-
traction quickly and efficiently. Furthermore, each core tree would
be orchestrated into CNs close to each other within the lowest
communication domains.

The structure of core tree relies on the properties of the MST
obtained during the DFS traversal of the graph, which involves
iterating through the vertices and edges, ensuring that each edge
selection maintains the acyclic property of the tree while also opti-
mizing for the characteristics specified. The final core tree provides
a robust representation of hierarchical communication topology.
YH-Light differs from previous work in that it aims to place all
vertices of an MST in the same CN close to each other within
communication domains.

The core tree algorithm based on DFS is summarized in Algo-
rithm 1. The process begins by extracting vertices and edges from
the graph (Lines 1∼3), followed by sorting the vertices in descend-
ing order of their degrees in parallel (Line 5). Subsequently, multiple
MSTs are constructed (Lines 7∼9) through DFS traversal of the in-
put graph. A core tree is then formed through the interconnection
of these MSTs (Line 10) until the core tree’s volume satisfies the
advanced features,i.e., vol-st that is a tunable hyperparameter that
can be optimized through the network bandwidth and the memory
capacity of CN.

Algorithm 1: Core-tree algorithm based on DFS
Input: edge.bin
Output: subtree

1 while 𝑒 ∈ edge.bin parallel do
2 vertexset.insert(𝑒.𝑣1, 𝑒 .𝑣2);
3 build_adjacency(𝑒.𝑣1, 𝑒 .𝑣2);
4 end
5 hub← sorted(vertexset) by descending in parallel;
6 𝑖 ← 0;
7 foreach 𝑣 ∈ hub parallel do
8 if 𝑣 .visited = 0 then
9 MST𝑖 ← dfs(𝑣);

10 core-tree← ⋂𝑖
𝑗=0MST𝑗 ;

// vol-st is a tuning hyperparameter

11 if core-tree.vol = vol-st then
12 return core-tree;
13 end
14 𝑖 ← 𝑖 + 1;
15 end
16 end

Algorithm 2: Hierarchy-Aware Partitioning
Input: Vertex list, V, sorted according to edge degrees in

descending order, a list of allocated CNs, N
1 H ←Building communication domain tree (N) and return the levels

of communication hierarchy;
2 Move isolated vertices from V to Ṽ
3 Set all vertices to be unvisited
// Construct the core tree by calling algoritm 1

4 ℭ← Core-tree(Ṽ)
5 HierarchicalPartition(V, ℭ)
6 return SUCCESS

// Distribute remaining isolated vertices

7 if !𝑒𝑚𝑝𝑡𝑦 (𝑉̃ ) then
8 Distribution( 𝑉̃ , 0)
9 end

10 Function HierarchicalPartition(vertex list V, Core-tree ℭ)
11 while !𝑒𝑚𝑝𝑡𝑦 (V) do

// dequeue the highest degree vertex

12 𝑣←𝑉 .𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ( )
13 𝑉̃ ← 𝑣’s (unpartitioned) sorted neighbor list
14 foreach 𝑣𝑖 in 𝑉̃ && 𝑣𝑖 ∉ ℭ do
15 ℭ𝔳 ← ℭ ∪ {𝑣𝑖 }

// V\{𝑣𝑖 } is remving 𝑣𝑖 from V

16 HierarchicalPartition(V\{𝑣𝑖 }, ℭ𝔳)
17 end
18 end

// Recursively distribute vertices within ℭ into
hierarchical communication domains, starting
from the lowest-level communication domain
(i.e., level 0).

19 while !𝑒𝑚𝑝𝑡𝑦 (ℭ𝑣 ) do
20 Distribution(ℭ𝑣 , 0)
21 end
22 end
23 Function Distribution(ℭ, 𝑑𝑜𝑚𝑎𝑖𝑛 − 𝑙𝑒𝑣𝑒𝑙 𝑙)
24 if empty(ℭ) then
25 return
26 end
27 else
28 Distribute vertices in ℭ to CNs within the same

communication domain, by first filling up an CN before
moving to another within the same communication
domain

29 Remove all allocated vertices from V and ℭ

30 if 𝑙 ≤ H then
31 Distribution(ℭ, 𝑙 );

ℭ ← Remove all allocated vertices from ℭ

32 if !empty(ℭ) then
// Distributing to a higher level

communication domain

33 Distribution(ℭ, 𝑙 + 1)
34 end
35 end
36 end
37 return
38 end
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4.2 Hierarchy-aware Graph Partitioning
Algorithms 2 outlines how to partition and distribute graph into
CNs, taking into consideration the graph’s spatial locality and hier-
archical communication domains.

Given a list of allocated CNs, N, containing node IDs or IP ad-
dresses, we create a communication tree by grouping CNs based
on their communication domains. This can be accomplished by
checking the node’s local gateway or querying the HPC resource
manager. The resulting communication tree encodes the communi-
cation pattern among CNs in the hierarchical communication topol-
ogy. After constructing the communication tree, we then record
the communication tree height toH (line 1), which indicates multi-
level communication hierarchies. For example, there is a hierarchi-
cal communication tree with 4-level communication domains, i.e.,
H = 4, as shown in Figure 2.

As a preprocessing step in the partitioning algorithm (see Algo-
rithm 2), we first remove isolated vertices, which lack connections
to other vertices, from the graph’s vertex list (V), and store them in
a separate list Ṽ. Following this, we proceed with the main steps
of the partitioning algorithm, applying the cohesion of MST to
manage how vertices are grouped and ensuring connectivity by
calling algorithm 1 (lines 2∼4) to build a core tree before calling
the partitioning function HierarchicalPartition (line 5).

To further reduce cross-domain message exchanging between
core-trees, Partitioning function (lines 3-6 in Algorithm 2). be-
gins with high-degree vertices from the (V) rather than the Ṽ to
check whether they are included in a core-tree (lines 11∼15) and
then recursively call partitioning function HierarchicalPartition
(lines 16), in which every core-tree will be recursively distributed
vertices within ℭ𝔳 into hierarchical communication domains by
calling Distribution function (lines 19∼20).

In the Distribution function that is a recursive function, all ver-
tices within a core tree are orchestrated into CNs within the same
communication domain, by first filling up a low-level domain(lines
24∼31) before moving to another higher-level communication do-
main(lines 32∼35) until all vertices of core trees are assigned to
CNs in the lowest-level communication domain.

It is worth noting that current graph partitioning methods typ-
ically treat CNs as equal entities in the communication topology,
randomly distributing vertices to any available node, which can lead
to poor communication efficiency. However,YH-Light addresses this
issue taking into account the locality of the subgraph and the vary-
ing communication latency within the communication hierarchies
of large-scale HPC systems.

5 Evaluation
5.1 Graph Data
We test YH-Light on both synthetic and real-world graph data.
Synthetic data are generated using the Graph 500 data generator
that takes in two parameters, graph factor (𝑚) and edge factor (𝑛),
to produce a graph with 2𝑚 vertices and 𝑛 × 2𝑚 edges. For our
evaluation, we vary the graph factor between 26 and 41 while using
the default edge factor of 16 to create graphs of different sizes
to validate YH-Light in various hardware setups. Table 1 lists the
synthetic graphs and real-world data used in our evaluation.

Table 1: Synthetic and real-world graphs used in evaluations

G. Scale Edge factor #Edges #Comp. Nodesreal-world web graphs

26 16 1 billion 1
28 16 4 billions 4
30 16 16 billions 16
32 16 64 billions 64
34 16 256 billions 256
38 16 4 trillions 4,096

clueweb12 42.6 billions 64
enwiki-2022 159 millions 64

Table 2: Hardware systems used in our evaluations

System Max. #nodes
used

CPU RAM/node Top-level
bandwidth

Tianhe-Exa 79,024 16-core FT-
2000 ARMv8
CPU @ 2.2
GHz

16G 200Gbps

Intel Cluster 512 12-core Intel
Xeon CPU @
2.93 GHz

64G 160Gbps

5.2 Hardware Platforms
To evaluate the portability of YH-Light, we apply it to two HPC
systems with different CPU architectures and interconnection com-
ponents. Table 2 lists the details of the two HPC systems used in
our testing, including the maximum number of computing nodes
used in the experiments. Both of evaluating systems run Linux
with the Linux kernel 9.3.0. We use MPICH 10.2.0 and libgomp 4.5.
We compile the benchmark using GCC 10.2.0 with “-O3" as the
compiler option. Note that the default is to perform experiments
using the first one, a subset of the next-generation Tianhe super-
computer (Tianhe-Exa) [48] with up to 79024 nodes. The second
is a commercial system, that is, a general cluster installed in the
national supercomputer center at Changsha [2].

5.3 Competing Baselines
We compare YH-Light with five representative graph partitioning
strategies including 2D decomposition [14, 16, 28, 45, 50], XTree [16],
Par-Metis (the parallel version ofMETIS [22]), ADP [9] and TopoX [24].
We note that Par-Metis is widely used in commercial graph process-
ing applications [22, 32], while ADP and TopoX are state-of-the-art
graph partitioning schemes that implement optimized versions of
2D decomposition partitioning. We also compare YH-Light against
Gemini [50] and GraphScope [8], two state-of-the-art graph pro-
cessing engines.

5.4 Performance Report
Following the Graph 500 test methodology, we use GTEPS (Giga
Traversed Edge Per Second), a higher-is-better metric, to measure
graph processing throughput for each test case. For BFS, we per-
formed a method ten times and obtained the geometric mean of
GTEPS to compute the final performance result by calculating the
harmonic mean [33] across 64 source vertices. Furthermore, we
execute graph operators twenty times and compute the average
time to validate YH-Light.
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Figure 3: Overall BFS performance with various partitions for varying nodes.

5.5 Benchmarking Graph 500
In this subsection, we evaluate the overall performance improve-
ment of YH-Light in Tianhe-Exa over 2D decomposition that is
widely used in large-scale HPC systems [13, 15, 16, 16, 28, 40, 50].
The increase in the number of increases from 16 to 1024, according
to YH-Light and 2D for BFS, the performance of YH-Light signifi-
cantly outperforms 2D for BFS in Tianhe-Exa (by 12.36× for 1024
nodes); Note that the performance of Tianhe-Exa based on YH-Light
achieves 2103.13 GTEPS with 1024 available CNs, outperforming
the 2061.48 GTEPS of Tianhe-2 (a.k.a. MilkyWay-2 using 8192 CNs.
The primary reason is because hierarchy-aware YH-Light effec-
tively reduces communication cost compared to its 2D counterpart.
We also evaluate SSSP performance using Tianhe-Exa based on
YH-Light and 2D, respectively. The results are similar to those of
the BFS tests.

Finally, YH-Light has been deployed in Tianhe-exa to compete
with BFS and SSSP for the latest Graph 500 rankings3, respectively.
3Tianhe does not attend the Graph500 BFS ranking for non-technical reasons [38].

Although the Fugaku and Wuhan Supercomputer are the fastest
supercomputers (except Tianhe-Exa) for BFS and SSSP, respectively,
YH-Light-based Tianhe-exa significantly exceeds them.

5.6 YH-Light vs. Popular Graph Partitioning
Figure 3 compares YH-Light with state-of-the-art competing base-
lines on the main evaluation system for Graph 500 BFS. In this
experiment, we use up to 4096 computing nodes because all com-
peting methods running beyond this scale lead to run-time errors
owing to a communication buffer overflow. Note that Par-METIS
could not execute some test cases on more than 1024 Tian-Exa
computing nodes (marked as X).

We first compare YH-Light with classical graph partitioning
policies, including 2D, Par-METIS, and ADP. More importantly,
we further compare YH-Light with the state-of-the-art vertex-cut
XTree and the state-of-the-art hybrid cut TopoX.

As shown in Figure 3, the performance of the BFS based on YH-
Light is up to orders of magnitude higher than that of any other
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Figure 4: Pre-processing overhead of BFS with various graph partitions.

graph partitioning method. As the number of nodes increases to
4096 nodes, the GTEPS of YH-Light is significantly higher than that
of the state-of-the-art hybrid TopoX and vertex-cut-XTree, where
the peak performance of YH-Light using 4096 nodes is as high as
22,490.17 GTEPS when running a graph at 𝑠𝑖𝑧𝑒 = 38. That is be-
cause YH-Light leverages knowledge of the hierarchical topology,
while other partitioning strategies hardly exploit multilevel com-
munication domains. We also obtain similar results on SSSP, where
YH-Light achieves a 17.6× improvement over the best-performing
baseline when using 4,096 Tianhe-Exa nodes.

The extensive results show that the preprocessing cost of YH-
Light is significantly lower than that of the others. In contrast, the
communication reduction achieved by many advanced partitioning
solutions often comes at the expense of redundant computational
overhead; e.g., TopoX is a state-of-the-art partitioningmethod based
on refactorization and requires many factorizations for partitioning.

5.7 YH-Light for Real-world Graphs
We further validate YH-Light and compare it with two famous
graph systems, including Gemini and GraphScope by running var-
ious graph kernels with real-world graphs listed in Table 1. Note
that GraphScope is the latest and state-of-the-art graph system
available [8], so we take it as the representative graph system for
large-scale graph tasks. Finally, we deployed YH-Light into an Intel
clusters. and test it against GraphScope[8]. The performance of
YH-Light-based BFS, and PR and CC (Connected Component[8, 16,
36, 50]) is superior to that of Gemini and GraphScope on a 64-CN
testbed of Tianhe-Exa. YH-Light achieves the best performance in
all graphs against two baselines, as shown in Figure 5(a). Note that
Gemini failed to run the enwiki-2022 and neither GraphScope nor
Gemini can run the bigger clueweb12 (marked as X) due to com-
munication congestion. Furthermore, YH-Light has the smallest
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Figure 5: Runtime for deploying YH-Light on two real-world graphs.

preprocessing cost over Gemini and GraphScope as shown in Figure
5(b). That is because YH-Light greatly mitigates communication
costs and improves graph processing performance, which beats
state-of-the-art partitioning methods and strategies. We can also
observe that GraphScope is only a few seconds away from YH-Light.
But YH-Light outperforms GraphScope by a clear margin, which
is very significant in the experiment of PR on enwiki-2022. This
highlights the potential of YH-Light.

6 Conclusion and Future Work
To harness the full potential of HPC systems for large-scale graph
processing, we propose YH-Light, a hierarchy-aware partition-
ing engine that fully utilizes hierarchical communication domains
within large-scale HPC systems. We validate YH-Light with the
Graph 500 benchmark and fundamental graph operations on two
famous HPC systems, including up to 79K+ computing nodes and
more than 1.2 million processor cores, YH-Light consistently out-
performs state-of-the-art graph partitioning methods and graph
processing systems. Looking ahead, the philosophy of YH-Light can
be seamlessly integrated into graph learning frameworks, boosting
their efficiency by optimizing communication and computation
across hundreds of computing nodes in distributed large-scale HPC
systems.
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